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THE COMPLETE ENUMERATION OF EXTREME SENARY FORMS

By E. S. BARNES
University of Sydney, Australia

(Communicated by H. S. M. Coxeter, F.R.S.—Received 17 September 1956)
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Let f(x;, ..., %5) be a positive definite senary quadratic form of determinant D. Let M be its
minimum value for integers xy, ..., &5, not all zero. The form is said to be extreme if, for all in-
finitesimal variations of the coefficients, M%/D is maximum. It is proved here for the first time that
there are exactly six classes of extreme senary forms, namely, the classes containing the six forms
denoted by ¢, ..., ¢, and @ (Another form @5 is shown to be only ‘perfect’, not extreme.)
The forms @q, ¢y, P,, P4 are equivalent to Ag, Dy, Eg, E§ in the notation of Coxeter (1951, p. 394);
@5 was discovered simultaneously by M. Kneser and the author (1955); @ is new.

Although the analogous forms in fewer variables have been known since 1877, the only previous
enumeration of extreme forms in six variables was by Hofreiter (1933), who missed @3, @4, @s,
and proposed instead an incorrect form which he called F,.
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1. INTRODUCTION

Let f(x) = f(%y, ..., %,) = Za;;%;x; be a positive-definite quadratic form of determinant D,
and let M be the minimum of f(X) for integral x £0. Suppose f attains its minimum M for

|
T the 2s sets
.;1 N . X =+4my =+ (my,...my) E=1,..,5);
< — the sets m, are then called the minimal vectors of f.
S - fis said to be perfect if it is uniquely determined by its minimum and its s minimal vectors,
= i.e. if the equations
tyJ
E 8 have a unique solution for the N = }n(n-+1) coefficients ¢; (= a;;) ; this clearly necessitates

s=N. .

fis said to be extreme if the ratio M"/D does not increase when the coefficients g;; suffer
any sufficiently small variation, i.e. if M?/D is a local maximum. If M"/D is an absolute
maximum over all positive forms in n variables, f'is called absolutely extreme, and we set
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462 E. S. BARNES ON THE

Clearly an absolutely extreme form is also extreme; Korkine & Zolotareff (1877) showed
that also an extreme form is perfect. The properties of being perfect, extreme or absolutely
extreme are easily seen to be unaffected by equivalence transformations or by multiplica-
tion by a positive constant; it is therefore convenient here to unite in one class all forms
equivalent to a (positive) multiple of each other.

The problems of determining all classes of perfect, extreme or absolutely extreme forms
in n variables (each of these sets including the succeeding one), or of determining y,, have
been attacked by many writers. In particular, Korkine & Zolotareff (1877) found all
perfect forms for <5, and Blichfeldt (1935) evaluated y, 7, and y, by a purely arithmetical
method. His method, however, is exceedingly complicated and his account very condensed.
Mordell (1944) showed that the value of y, could be deduced very simply from that of .

As regards the case n = 6, with which this paper is particularly concerned, the literature
appears to contain only one well-established complete result, namely, Blichfeldt’s evalua-
tion of 5. Korkine & Zolotareff (1877) and Voronoi (1907) did not proceed beyond 7 = 5
in their analysis of perfect forms. Hofreiter (1933) used a geometrical method to find all
extreme forms in six variables, but there are some serious errors in his work; one of his
forms is not extreme (see Coxeter 1951, p. 394),and, as we shall show, there exist three extreme
forms not listed by him. Chaundy (1946) used a method of induction to establish the
absolutely extreme forms for all z<C10; although his results are certainly correct for n<{8,
it appears that the method cannot be justified and presumably gives a wrong result for
n =12 (see Coxeter & Todd 1953). Finally, Coxeter (1951) obtained a large number of
classes of extreme forms, which included all known forms for n<8 and, indeed, a new form
for n = 6; however, as Coxeter remarks, his method finds extreme forms of particular types
only and is not intended to be exhaustive.

The discovery of yet another senary form, made independently by Kneser (1955) and
the author (1955), prompted the author to re-examine the whole question of extreme senary
forms. The method used is Voronoi’s algorithm for perfect forms, discussed in § 2, which
suggested itself as being probably the most systematic and least susceptible to error. We
establish

THEOREM 1. There are just seven classes of perfect senary forms, represented by the forms (each
with minimum 1)

Po = Z x} + 2
i<j

¢ = ¢0 X1 X9,

Gy = Po— X Xy — % %3,

= Po— (%1 Xy + x50, +x5%5),

By = Po— (%) %y + %35, + 2305+ X3 46+ Xy X5+ X4 X+ X5 %),

s = Po— (%1 %5+ %36, + 2305+ %, %5),

P = Po— 3 (2% %y + 2, X3+ 1 X6+ X x5+ x4 X5+ 205 %)

Of these, all except ¢ are extreme.

In table 1 are listed the six extreme forms, giving also the symbol used by Coxeter (1951),
the number s of minimal vectors and the value of 26D/M?® (in decreasing order of this
quantity).
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TABLE 1. THE EXTREME SENARY FORMS

form Coxeter’s symbol s (2/M)8 D
@0 4q 21 7 -
&4 — 21 13.33/26

6 — 21 7328
¢1 Bs ~ Da ' 30 : 4
R E} 27 35/26
&, E; 36 3

We see from this that the (essentially unique) absolutely extreme form is ¢,; thus, in
agreement with Blichfeldt (1935) 1 64 ‘

RoDg) s

Of the above forms not listed in Coxeter (1951), @, is discussed in Kneser (1955) and
Barnes (1955), while ¢, and ¢, are here given for the first time. It is clear, however, that
Voronoi knew the existence* of the perfect non-extreme form ¢;, which is the simplest
known form of this type.t

2. VORONOI’S ALGORITHM

This section gives an outline of the methods and results of Voronoi (19077), which will be
fundamental in all that follows.

In the notation of § 1, we associate with the minimal vectors m, of a perfect form ¢(x)
the linear forms

A = A (X) = nzmikxi (k=1,...,9), (21)
i=1 ,
and call them the (associated) linear forms of ¢. Corresponding to ¢, we define a.region
R = R($), in the N-dimensional space of the coefficients a;;, as the set of points satisfying

f(x) = zaijxixjakglpk/l,% with p,>0 (k=1,...,s). (2-2)

In the terminology of Bachmann (1923) (where Voronoi’s methods are developed in detail),
R is the region with the s edge-forms A?. R may also be defined as the set of points (ay)
satisfying a certain set of homogeneous linear inequalities

Ui(ay;) —ziszﬁ-f)aij} 0 (k=1,...,0), (2-3)
and so is bounded by o (N —1)-dimensional faces |
W Yu(ay) =0 (k=1,...,0). (2-4)

To each face I, of R there corresponds a uniquely determined neighbouring region R;
which has this face in common with R, and which corresponds to a perfect form ¢;, distinct}
from ¢; we say that ¢ and ¢; are neighbours (along the face W}). '

* Voronoi (1907, p. 100), without amplifying the remark in any way, states: ‘Ce n’est qu’a partir des
formes positives A six variables que j’ai rencontré des formes quadratiques positives qui [sont parfaites] et
ne sont pas des formes extrémes’.

+ Some perfect non-extreme forms for all n > 11, based on the structure of @, are given in Barnes (1955).

1 In the sense that ¢/ is not a multiple of @, though it may well be equivalent to a multiple of ¢." Clearly
any multiple of ¢ yields the same region R.

56-2
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464 . , E. S. BARNES ON THE

The practical efficiency of Voronoi’s method lies largely in the simplicity of the relation
between neighbouring forms. Let I be the face ¥(;;) = Zp,;4,; = 0 of R, and define (taking
bij = pj;) @ quadratic form

¥(X) = Zpy;x,5;. (2:5)
Then the neighbour ¢’ of ¢ along the face W is given by

¢'(x) = (x) +p¥(x),
where p is a uniquely determined positive number. p may be found (by a finite process)
as the minimum of (¢ —M)/(—y) for integral x with ¥(x) <0. /

The set (R) of regions associated with all perfect forms (g) fills simply the space 4 of all
positive quadratic forms, any two regions either being disjoint or having a common face.
The number of classes of perfect forms in z variables is, however, finite, and thus they may
be found as follows: 4

Starting with any perfect form, e.g.

$o=2 a7+ 3 Xi%js
I i<y
we find all its inequivalent neighbours, discarding any equivalent to ¢,; we now find all
inequivalent neighbours of these forms, discarding any equivalent to forms already found;
and so on. This process terminates when we arrive at a set of inequivalent perfect forms

¢0’ ¢l’ v ¢T—l’

with the property that any neighbour of any form of the set is equivalent to a form of the
set. These 7 forms will then be a system of representatives of the different classes of perfect
forms in n variables.

The work is much lightened by using the group g of automorphs of the perfect form ¢.
If Te g, then T permutes the minimal vectors m,, and so the contragredient transformation
T'~! permutes* the linear forms ;. Thus the contragredient group ® leaves R invariant
and permutes its faces W;. Ifthe faces W, W] are equivalent under ®, then the corresponding
quadratic forms ¥, (X), ,(X) are equivalent under g. Since ¢ is invariant under g, it follows

that the neighbours '
Gr=0+pYr b =d+p¥

are equivalent under g. Thus equivalent faces of R yield equivalent neighbours of .
In order to enumerate all classes of perfect forms, our basic problem is thus to find the
inequivalent faces of R, which is initially defined in terms of its edge-forms 2. Now a face

W: y(f)=2p;a;=0 (2-6)

of R is determined by N—1 independent edges; if W contains altogether > N—1 edges,
we shall call W briefly a i-face of R. If these ¢ edges are given by, say, 1%, ..., A7, the linear
forms Ay, ..., A, will be said to lie on W and A,,, ..., A to lie off W. We then have

YA =0 (k=1,...,8), (27)
D) >0 (k=t+1,...,s), (2-8)

* Here, and throughout the paper, we waive the distinction between the pair of vectors +m; and
between the associated linear forms + A,.
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COMPLETE ENUMERATION OF EXTREME SENARY FORMS 465
and the complete set of forms of R lying on W is given by

!
J=2pdi (=0).
Now (2-6) and (2-7) may be written as
gy =Zpymm =0 (k=1,...,0), (29)
y(my) = Zpmym;; >0 (k=1t+1,...,9), (2:10)

where y(x) is the quadratic form (2-5) corresponding to W. Voronoi proves that, con-
versely, a set of forms A,, ..., 4, are the forms lying on a face W if and only if (2) the equations
(2'9) have rank N —1 (so that the ratios of the p;; are uniquely determined) ; (4) this solution
(#;;), with an appropriate sign, satisfies (2:10).

These conditions give a practically efficient method of determining all faces of R, which
is used exclusively by Voronoi for forms with s> N. When s = N (e.g. for ¢,) the problem
is trivial; for then (2-2) provides N equations for the g, in terms of the a;, which have a
unique solution (the equations clearly have rank N always, since ¢ is perfect). Since f
belongs to R if and only if all p, >0, this solution provides the N inequalities determining
R and hence the N faces of R.

The above simple method when s = N points the way to a more direct determination of
the faces, which we now describe:

The condition (2-2) for f to belong to R may be written

s
& =k§1'okmikmjk (Gy=1,...,n), (2:11)

with p, >0 (k =1, ...,5). Regarding (2-11) as N equations, of rank N, for p,, ..., p,, we see
that the complete solution will involve / = s— N parameters, say u, ..., %, and may be
written as -

Pr = Ly(ay) + My (u), (2-12)

where L;, M, are linear forms and u = (4, ..., %,). We now have

Lemuma 2:1. The forms Ay, ..., A, are the forms lying off a_face W of R if and only if (a) there
exists an essentially unique non-trivial linear relation

> o, M (w) =0; (2113)
+1
(b) the coefficients o, in this relation satisfy _
u>0 (k=t+1,...,s). (2-14)
The equation of W is then ¥(a;) = i a Ly(a;) = 0. : (2-15)
£+1

(i) Suppose first that ¥ is a face of R given by (2-6) and that A,, ,, ...;A, are the forms
lying off W. Then, by (2:7) and (2-8),

¥ (A7) :”Zpijmz‘kmjk =0 (k=1,.., t),‘

o, = Y(AF) = Zpymym;,>0 (k=1t41,...,9).
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466 E. S. BARNES ON THE

Now for an arbitrary solution p, of (2:11), we have

¢(aij) = Zf’ij i = kgl Pk(zﬁij mikmjk) = kgpk ¥ (A7),

whence ¥(a;) = i 0 P
k=i+1
(2:12) now gives ¥(a;) = 2 o Lly(a;)+ 2 o M(a).
k=i+1 k=t+1

The relations (2:13), (2-14) and (2-15) now follow at once.
- Thus (2-15) is established, and also the necessity of the conditions (a) and (4), with the
exception of the assertion of uniqueness in (a).
(ii) Suppose now that the conditions (a) and (4) are satisfied, and set

x(ay) = S Ly(ay);
t+1
then, by (2:13) and (2-14), x(a;) = ioc,s,ok (2,>0)
t+1

for an arbitrary solution p, ..., p, of (2:11). Taking the particular forms = A in (2-11)
and the obvious solution p, = 1, p, = 0 ([ k), we obtain

X(’llzc) =0 (k =1, "')t))

X(A2) =a,>0 (k=1t+1,...,5).

It will now follow, as required, that x(a;) = 01is a face W of R and that 4,,,, ..., 4, are the
forms lying off W, provided that the set A}, ...,A? contains N—1 independent forms. That
this is true is easily seen from the uniqueness of the relation (2-13).

(ili) We can now complete the proof of the necessity of (a) and (). Suppose, contrary
to assertion, that there exists a further linear relation

3 A () =0,

in which the g, are not proportional to the a,. Since all a;,> 0, ya, +f; has the sign of y if
| 7| is large enough for all £ = ¢+ 1, ...,s. Hence there exists a value of y such that

7“k+ﬂk>0 (k=t+l>-'-:s)>

while ya,+f;, = 0 for some £; also not all ya, +f, are zero, since the sets (@), (f;) are not

proportional. :

We thus have a strictly positive relation between the elements of a proper subset of
M, ,(u), ..., M,(u). Proceeding in this way, we eventually obtain a subset, say M,,,(u), ...,
M_(u), for which there exists a unique linear relation ;

S gy Mu)=0, a>0 (£>1).
1

But now, by (ii), there is a face W’ of R such that the forms lying off W’ are A, ,, ..., A;
thus W is a proper subset of W’, which is clearly impossible.
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Lemma 2-1 provides an efficient method of determining the faces of R, at least for forms
for which s— N is small, and we shall use it for all ¢, except ¢, and ¢,. ’

Since the total number of faces is often very large (it increases rapidly with s— N), we
must also have a practical method for recognizing equivalent faces (and choosing a single
representative as early as possible). Itis clear that if W, W' are faces of R containing respec-
tively forms 1,,...,4, and 4;, ..., 4;, then W and W’ are equivalent if and only if the (un-
ordered) sets A, ..., 4, and 1}, ..., A, are equivalent under &. Thus, for equivalent faces, we
require ¢ = ¢’ and :
Ay ey ) ~ (A1 o5 AD)y Ay oos Ag) ~ (Aigs -5 AY).
Our normal procedure will therefore be as follows: :

We build up, step by step, the set §= (A,;, ..., 4,) of forms lying off a face W of R,
using the group ® as far as possible to eliminate equivalent sets at each stage. Thus if| as is
usually the case, & (regarded as a permutation group on the A;) is transitive, then any set S

TABLE 2. THE PERFECT SENARY FORMS AND THEIR NEIGHBOURS

inequivalent neigh- inequivalent neigh- inequivalent neigh-
form faces of R bour form facesof R bour form  facesof R - bour
B W) 4 b W@ 4 g W@ 4
‘ SR W, (20) ¢ W, (20) Py
1 Wy (200 & Wy (200 ¢ Wy (20)  ¢s
W, (200 ¢ W, (28) ¢,
Ws.(25) P, Wy (24) ¢ Py W, (20 P
W, (20) P, W (22) ?2 W, (24) Py
W5 (20) &, W, (200 ¢y W, (21) ?s
W5 (20) ¢4 W, (24) ¢, :
W, (20) ¢, Wy (20) ¢ s W, (20) 1
W3 (20) b5 Wi (21) ?s W, (20) 2
‘ Wy (20) Ps Ws (21) Py
‘ W, (20) . 3
Wy (21) 4
Ps W, (20) b2

is equivalent to one containing any preassigned form, say #,. We now consider (g, ), the
subgroup of  which leaves g, invariant. Under G(g,), the remaining s— 1 forms will fall
into transitive systems P,, ..., P,, and so any set § is equivalent to one containing one of the
pais (o t), s (s ),
where 4§ is chosen arbitrarily from P. Thus we continue until we reach sets S for which
there is a unique strictly positive relation (2-13). The process is considerably simplified by
the trivial observation that if S, §” are sets of forms lying off faces W, W’ respectively, then
S’ cannot be equivalent to a proper subset of . ,

In order to apply this process we clearly do not need to know the full groups &, G (x,), ...,
but merely sufficient elements of them to obtain the various transitive systems. The use of
too small subgroups would merely result in our finding large numbers of equivalent faces.

In the following seven sections, we shall establish in turn the results exhibited in table 2,
the columns of which give respectively: the perfect form ¢; the equivalent faces W of
R($) with the number ¢ of edges of W in brackets; the neighbour* of ¢ along the face .

* We say, for simplicity, that ¢’ is a neighbour of ¢ if ¢ has a neighbour equivalent to ¢'.
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Finally, we quote Voronoi’s fundamental result on extreme forms. A form f(x) = Za;; %%,

(not necessarily perfect) with associated linear forms 4,(x) (£ =1, ..., s) is said to be eutactic

if its adjoint F(X) = XA,;x;x; is expressible in the form

F=3pA, p>0 (k=1,..,5). (2:16)
k=1

Thus a perfect form ¢ is eutactic if its adjoint is an interior point of R(g).

Voronoi’s theorem may now be expressed as:

J(X) is extreme tf and only if it is both perfect and eutactic.

A simple direct proof’is given by Kneser (1955) ; the proofin Voronoi (1907) is also given,
in a simpler form, in Bachmann (1923).

3. ¢, AND ITS NEIGHBOURS

Voronoi (1907, pp. 145-149) shows very simply that, for all #, the form

bo(x) = St 3w, Dlgo) = (n+1)/2, Mig) =1,

is perfect and extreme. Its associated linear forms are
x (i=1,..,n), x—x; (1<i<y<n);

they number N = {n(n+1), and they are all equivalent under &. Thus R(¢,) has N equi-
valent 20-faces. Taking the representative face ,

Wi (20): —a;,, =0
(which contains all forms except x; —%,), we obtain for n>3 the neighbour

$1(X) = Bo(X) —x1 %5,

which is not equivalent to ¢, for n>4.

This verifies table 2 for ¢,.
For later use we note here the group g of automorphs of ¢,. Writing

Uy =—X;— ... — Xy, Uy=2% (1=1,...,n),
n
we have 20, = X u,
=0

and g is the set of (n+1)! permutations of uy,4,, ...,4,. More precisely, this is the factor
group g/(£3); here, as elsewhere, we waive the distinction between transformations
(minimal vectors, associated linear forms) and their negatives.

4. ¢, AND ITS NEIGHBOURS
Voronoi (1907, pp. 152-160) shows that, for all n>>4, the form
$1(X) = §o(X) —x %5, D(y) =1/2072, M(4,) =1,
is perfect and extreme. Its associated linear forms are
x, (i=1,...,n),
X;—X; (I<i<y<n, (4,5) #+(1,2)),
X, +Fx,—x, (k=38,...,n),

X2y —x,—x,  (3<k<I<n),
so that s = n2—n.
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All neighbours of ¢, are also shown to be equivalent to one of the following perfect forms
(for suitable p>0): by — pi g, (41)

G1+p(%, %y — 034 X304 — Vg5 X3 %5 — ... “3;:—1, 2 ¥n=1%2) (4-2)

where each J; (83<i<j<n) is 0 or 1. Also, for <8, we have p =1 in (4-1), and so the

neighbour Gy = P — %1 %5 = Po— X, Xy — X1 %3 (4<n<8).

For n = 6, in particular, the face corresponding to (4-1) is
and there are five forms not lying on this face, namely, x, — x5, x, +x,— x5, X, + %, — 23— X,

(I = 4,5, 6); this is therefore the face I, (25) of the table.
We now examine the forms (4-2) for n = 6, so that N = 21, s = 30. If we set

ul :x1+...+x6, u2=x1-—x2, ulle (i:3, ceey 6), (4‘3)
6
then 2¢,(x) = > #?, and the group g of automorphs of ¢,(x) may be defined as the set of
i=1 . o

all permutations, with arbitrary changes of sign, of uy, ..., us; thus g is of order 2°. 6!
Using simply the permutations of s, ..., x5, we see that any form (4-2) is equivalent to

one of Gy + pxy xp, (4-4)
1+ (pxy %y —x3%4), (4°5)
¢l+p(xlx2—x3x4-x3x5), (4-6)
B1+p(%) %y — X35, — X5 Xg), (4:7)
Gyt p(¥y Xy — K3 Xy — X3 X5 — X3%6), (4-8)
G1+p (g Xy — Xy Xy — Ky X5 — Xy %5), (4-9)
1+ p (% %y — X3 Xy — X3 X5 — Xy Xe), (4-10)
¢1+p(xlx2—x3x4-x3x5%-x3x6—x5x6), (4-11)
B1+p (%) Xy — X3y — Ky X5 — X4 %6 — X5 %), (4-12)
1+ p (%1 Xy — XXy — Ky X5 — X366 — Xy X5 — X4 Xg), (4-13)
By P (%) Xy — X3 Xy — X3 X5 — Xy Xg— X4 X5 — X4 X6 — X5 %) - (414)

Using now the full group g, we may easily verify that (4:6) is transformed into (4-12) by
Uy —> Us, Us—> Uy, Ug—>—Ug; (4°5) into (4-8) by u; — uy, ug——ug, uy—>—1u,, us—>u;; (4-7) into
(4-11) by u; =y, uy—>uy, us—>—ts, ug—>—1ug; (4°9) into (4:13) by u, = ug, us—>u,, ug—>—1us.
Hence any form (4-2) is equivalent to one of

J1 = 1+px, %y, _

Ja = 1+ p(x, % —%3%,),

Js = B1+p(x, %y — 5356, — X3 %5),

Ji = 1+p(x 05— 532, — %5 %),

S5 = b1t p (% %y — X34y — X3 X5 — Xy X5),

Jo = b1+ p(x %, — x3%, — X35 — X, %),

S = B1 P (% Ky — Xy Ky — Xy — Ky X — Xy X — Xy g — X5 X).

57 Vor. 249. A.
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(i) Taking p = 1 in f] gives f; = @,.
(ii) Taking p = 1 in f, gives
Jo = G1+ (%1%, — x3%,) = G — 232,
which is trivially equivalent to ¢; = @y —x; %,.
(ii1) Taking p = 1 in f; gives
Js = P15, Xy — KX, — X365 = Py — K3 %, — X35,
which is trivially equivalent to ¢, = ¢, —x; x,—x; 5.
(iv) Taking p = } in f, gives
Jo= 1 +3(x, 2 — 52, — x5 %) = &5
(v) Taking p = } in f; gives similarly f; = ¢..
(vi) Taking p = 1 in f; gives
6 = Po— X3 Xy —XgX5— X, Xg,

which is equivalent to ¢,; we have in fact ¢,(x) = f5(y) with

X1 =Y11TY2tYs+Ye X2=Y1, X3 =Yy X=Y3 X5=Ysy X¢=—Y1—Y2—Y3— Y

(vii) Taking p = % in f; gives immediately f; = ¢,.

Since all the faces corresponding to f,, ..., f; are easily found to be 20-faces, the table of
faces and neighbours for ¢, is established, except for possible equivalence among the eight
faces. Since equivalent faces have the same number of edges and have equivalent neigh-
bours, we have only to show that W, and W (each with 20 edges and neighbour ¢,) are in-
equivalent. This can be settled directly, but the following method is simpler (and, more-
over, does not require any information on the groups g and ®):

W, has ¥ (X) = x; %, — %34, —x3%; (Where in the above f; = ¢, +p¢) ; the ten linear forms
A, not lying on W, are those for which y(m,) >0, and are therefore
Xy—Xgy Xg—X5, X +x,—x, (k=3,...,6),
3™y Xy—X5 K HA—x ( ) (4-15)
Similarly, W; has §(X) = x, %, —x3%,— %345 —x,%¢ (as in f; above), and the 4, not lying on
W, are

X3—Xy X3—X5 Xy Xg  XpHXy— Xy \(k:?’""’ﬁ)’} (4-16)

Xy tXg—Xg—Xgy X+ Xg—Xy— X5, X+ Xy—X5—Xg.

Now among the forms (4-15) there are just four linear relations of the type A, +1,+1;=0,
namely, (ry =)+ (50— 1) — (511, — ) = 0,
(%5 —5) + (%) + 2y — 25— %) — (%, + 23— x5 — x5) = 0,
(%3 —2y) + (%) + 2y —x5) — (3, +2x,—2,) = O,
(%3 —2,) + (%) + 2y — 23— x6) — (% + %, — %, — %) = 03

while among the forms (4:16) there are five linear relations, namely, the first three of the

above and (4 — %) - (%, + % — %) — (%, + %, — 25) = O,

(x4 —2%g) + (%) + 2y — Xy — x5) — (%)%, — x5 — %) = 0.
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Since ® permutes the 4, and preserves linear relations among the A;, it follows at once that
the sets (4:15) and (4+16) are not equlvalent under ®, and hence that W, and W} are not
equivalent.

5. ¢5 AND ITS NEIGHBOURS
It is shown in Kneser (1955) and Barnes (1955) that
b3 = Go—3(%) Xy 32, x5%5), D(fs) = 13.3%/212,
has minimum 1 and is perfect and extreme; and that its twenty-one associated linear forms

are .
x, (1=1,..,6),

xz‘_xj (1 <Z<_]<6, (Za]) :*:(1) 2), (3a 4)) (5a 6)):
Xyt oy —X3—%y, X HXy—H5—Xe, X3+ Xy—X5— X,
which we denote by 4, (1 =1, ...,6), 4; (j = 1, ...,12), v, (k= 1,2, 3) respectively.

Now all permutations of x,, ..., x; which transform each pair (%, x,), (x5, %4), (x5, %5) into
a pair of this set are clearly elements of ®.* It follows at once that the forms of each set
(A); (#;), (vx) are equivalent under &.

Since here s = N = 21, R(¢;) has just twenty-one faces, and at most three inequivalent
faces, the forms lying off which may be taken as A, = x, gy = ¥, —%3, V| = %, + X, — X3 —%,.
Solving (2-2) for the p, in terms of the a,;, we obtain the faces

Vi(ay) = ay +aptas+ay,+a5+a,6=0,
balay) = —a1,—28,3—a34+a56 = 0,
¥3(ay) = a+ag,—a5 = 0.
Thus there are at most three inequivalent neighbours of ¢,, given, for suitable p> 0, by

J1 = G5+ p(xl+x1 %5+ 2, 25+ 5y Xy + 2 25+ %, Xg),

Jo = @3 +p(— 2%, — 2%, Xy — x3%, + %5.%6),

Js = Pg+p(%, %5+ %304 — X5 %).

(i) Taking p = % in f;, we obtain
Sr =843+ aftaxp+ $a g+ §ay a3 25+ 3
+ Ky Xg + X Xy Xy X5 - X Xg - X3 Xy X3 X5+ K3 X+ Xy X5+ Xy Xg T+ 325 %,
which is equivalent to ¢,; we have, in fact, ¢;(x) = f,(y) with

Xy =Y1+Ys, Xo=Y1HtYs X3=—Y, ¥=Y5 ¥5="Ys X¢=1Y
(ii) Taking p = % in f, gives
Ja = Go— %1%y — %, X3 — X3y,
which is trivially equivalent, under permutation of the variables, to
Qo X3 Xy — Xy X5 — Xy Xg;
and this last form has been shown in § 4 (vi) to be equivalent to ¢,.
(iii) Taking p = % in f; gives
Js = Go—%5x~ Po—%, %, = ¢;.

* This subgroup is in fact /(£ J), as is shown in Kneser (1955).
57-2
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The three neighbours of ¢; are thus ¢;, ¢, and ¢;;-and these forms are inequivalent;
table 2 for ¢, is therefore established.

6. @5 AND ITS NEIGHBOURS
The discussion of  ¢5(X) = @o(X) — 3 (%) %5+ 232, + X355+ %, %5) (6-1)
is greatly simplified by making the preliminary transformation

3 .
-1 -1 -1 -1 2 —1
-1 -1 -1 -1 -1 2 y
-1 -1 -1 -1 -1 -1
-3

x=Ty=1% (6-2)

of determinant . We obtain

205(X) = yi+93— 925 +Y3+yi+yE—ysys+yi. (63)
This form has determinant &, so that D(g,) = 34/21°,
From (6-2) we see that X is integral if and only if'y is integral and satisfies

34=0 (mods3). (6:4)

On noting that the form y3—y,y,+y3 is itself positive definite and assumes a positive value
less than 3 only for =+ (y,,y5) = (1,0), (0,1) or (1,1), we can easily show that M(g;) =1
and establish the twenty-two minimal vectors. Using co-ordinates contragredient to
those in (6-3), we denote the associated linear forms by

Ay = Y2~ Y5 / A1y =Y2—Ye A3 =Ys+Y5+Ye
Ay = Y3—Ys5 Ay =Y3—Yer - A3 = Y3+Ys5+Yes
A1 =Yo+Ys+Ys sz =Ys+Ys+Ys A3 =Ya+Ys—Ys—Ys;
Hbor = Y1~ Y5 Koz = Y1~ Ye Hos = Y1+Y5+Ye

Ho=Y2—Ys Moo =Ys—Yu Mo =Y2FYstYs;

Vor = Y4~ Y5 Vo2 = Ys— Yo Vo3 = Y4t Y5t Ye

Vio = Y1 Y2 Voo = yl‘fys; ‘ V3o = Y1 +Yat+Ys;
K=Y —Ys

We recover the associated linear forms in x co-ordinates (contragredient to those in (6:1))
by the transformation

. —~1 -1 -1 3

3 . —-1 —1 -1

RPN (PR TS R RO
y=Tx=3 | ., 1 1) (6-5)

—1 2 —1
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The adjoint of (6-3) is a multiple of
05(y) = 3yt +4(y3+y2ys+y3) + 395+ 4(¥3+ 546+ 43), - (6°6)
and the most general expression of 3wy in the form | |
Zp; A5+ 2o ojﬂgj + Loy i + 27 o; vy + Limygviy + Ok (6-7)
(where the suffixes run independently through 1, 2, 3) is given by
py=1, 0y=09=0, Ty=T9=p 0=0, with at+pf=3. (6-8)
Thev coefficient § = ‘O shows that @5 is not eutactic, and hence not extreme.
We now consider the group ®. We first note that, in (6-5), X is integral if and only if
3y, ..., 3yg are integral and congruent modulo 3. Hence a linear transformation of y, ..., y,

corresponds to an integral unimodular transformation of x,, ..., x5 if and only if it is an in-
tegral unimodular transformation of 3y, ..., 3y, which preserves the relation

8y, =3y,=...=3ys; (mod3). (6-9)

Now ®, as the contragredient of g, permutes the associated linear forms. Also, from (6-6)
to (6-8), a transformation permuting the linear forms is an automorph of w;, and hence
belongs to ®, if and only if it () leaves « invariant, () leaves invariant or interchanges the

sets
(1) = (Ho1s Hozs Hoss H10s Ha0s H30) s () = (Vo> Yozs Vo3> V10 V205 V30) -

From this it is easily seen that the following transformations* belong to &:

U Y3 —Y2—Y3)s  Uss Yoo —Ys—Ys)'s (Y15 ¥a)'s (Y2 ¥s5) (s> Ye)-

Thus ®, as a permutation group on the linear forms, has transitive systems

(’1) = (’lll”llb EX}) ’133)’ ((/“)a (V))a (K)

To determine the faces of R(¢;) we use the method of lemma 2-1, and begin by solving

the twenty-one equations obtained by equating Xa;x;x; to the form (6-7) (where the linear

forms are written in x co-ordinates to avoid later complications). It suffices to give the
following portion of the solution, which involves a single parameter u:

6
l N
2p5) = @12 — Q34— 35+ Ay,

6 -
20 = 2?“1i“’12+a34+435 +a,5—2u,

2030 = — a5+ a34+ ag5+ay5—2u,

Tog = — Q56— U, _
2701 = ay5+2a,3+ 255+ 2033+ 34— ag5 — @45+ 2036+ 2u,
2Ty = — g5+,

Tgp = U.

* For convenience we use here, and also in §§8 and 9, the notation (a, b, ...)’ for the full permutation
group with carrier a, b, ..., and the usual cycle notation for its elements.
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- We obtain at once the faces § = 0, p;; = 0, i.e.
6
W (21): ¢5(ay) = z_glais =0,

W;(21): %3(“&) = Gyp— U3y —A35+ 45 = 0,

each with twénty-one edges; the forms lying off them being respectively x and Ag;.

Since all 4;; are equivalent under ®, R has nine faces all equivalent to I;. Let now § be
a set of forms determining (lying off) a face W not equivalent to W}, W;. Then § can contain
only the forms (4), (v). Since these are all equivalent under ®, we need consider only sets
containing v4,. From the above solution, giving 75, = , v3, does not determine a face, and
$ contains just one more form.

Now G(v,,), the subgroup of ® leaving vy, invariant, certainly contains (y,,y;)" and
(45> Ye» —Y5—Ys)'» s0 that, under 6 (v5),

Hor ~ Moz ~ Hoszs Mo~ Ha0s Vo1~ Vo2~ Vo35 Vip ™~ Vao-

Hence §'is equivalent to one of the sets

(Vsos ho3)s  (Vsos t1o)s  (Vaos 30)s (Vs0sVo1)s (V305 Va0)-

The above solution shows that the first three of these yield the faces:
W, (20): ¥y(a;) = T30+ 003 = —a56 =0,
] ,
W, (20): ¥olay) = 2759+2070 = 2 ? 4y — Qg+ a3y + 35+ a4 = 0,

W (20): ¢-l(dij) = 2739+ 2039 = — @13+ A34+ 351 a45 = 0.

The remaining two sets do not determine faces, since the corresponding linear dependence
relations clearly cannot have positive coefficients.
We have thus shown that all neighbours of ¢, are equivalent (with appropriate p>0)

to one of
J1= 5 +p(—%; %y K304+ 23 %5+ %, %5),

Ja = B5+p(20F 2y Xy + 20 23+ 2y x4+ 2y X5+ 2%y K+ Xy Xy + X3 K5+ Xy X)),
Js = G5+ p(x; %y — x3%, — %305+ %4 %5)
Ji=85+p(—x5%),
S5 = b5+ p (% %6+ X6+ X366+ %y g+ X5 X6+ X5)
(i) Taking p = }inf, gives  f; = do—x,%, = ¢;.
(ii) Taking p = % in f, gives
Ja = Gotx1 (31 + x5+ x4+ x5+ Kg) ~ o — %, By — %, X5 =
under the transformation x;—>—x; — %, — X3 — %, — X; — %¢ (which is an automorph of ¢,).
(iii) Taking p = % in f; gives
J3 = Po— Xz Xy —KgXy ~ Gy — %1 Xy — % X3 = Py
(iv) Taking p = % in f, gives

i = o— 3%, Xy X3 %4+ Ky X5+ Xy X5+ K5 Xg) ~ Po— F (% Xy X3 X+ Xy X5+ K30+ X5 Xg)
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by a permutation of variables. This last form was shown in § 4 (where it is the form (4-11)
with p = }) to be equivalent to ¢@,.
(v) Taking p = } in f; gives
5 = Po— B(x1 % 32y 230524 5) +Ftg (%) + 2y 2 x5 x6) ~ By
under the transformation x; — x, + g, X5 —> X5+ Xg, ¥3 = X3, ¥, —> Xy, X5 —> X5, Xg—> — X (Which is
just ug—>—ug in the notation of §4 (4:3)).

Table 2 for ¢, is now completely established, the inequivalence of the five given faces
being trivial.
7. ¢ AND ITS NEIGHBOURS

We have :
P6(X) = a1+ ... + 2§+ 3y ¥y + 1 %y + 2y %5+ 38 Xg + Ky g+ Xy %y
+ 3%y X5+ Xy Kgt+ Xy Xy X3 %5+ X3 %+ Xy %5+ Bxgxe. (T1)
It is not difficult to show, by a direct argument, that we have here M =1, D = 73/212,

s = N = 21. We can, however, simplify the analysis and see the structure of this new form
more clearly by making the preliminary transformation

3 6 2 5 1 4
5 3 1 6 4 2
4 1 5 2 —1 3

— Fy — 1 .
X=Ty=%_4 1 2 —2 1 —3|¥ (7-2)
1 -2 -3 —4 2 1
—6 -5 —4 —3 —2 —1
of determinant 4. We then obtain
6
4g¢(x) = 2 ?%‘24’2 ;j Y:Y; = 20(y).
Following Voronoi’s analysis of ¢,, we define y, by
6
Su-o, (73
6
whence 4a(x) = 24(¥) = 311 (-4

Since 2¢, has determinant 7, we have at once D(gq) = 73/212.
From (7-2) and the inverse relation

—1 ) .o —1 . =1
1 —1 —1 i .o—1
1 .
e -1 —
y=3"x 1. —1 1]®
“ ) 1 ) 1 . .
1 . 1 . . 1

we see that X is integral if and only if y is integral and satisfies
Y1+2y5+3y3+4y,+5y5+6yg=0 (mod7),

6
i.e. » Yiy;=0 (mod?7). ) (7-5)
i=0 :
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‘To determine the minimum and minimal vectors of ¢4, we have now to consider

26,(¥) = 3 47

for integral y; subject to (7-3) and (7-5). Now this form takes only even values. It takes the
value 2 only when some two y; are 1, —1 and the rest are zero; and clearly none of these sets
satisfies (7-5). It takes the value 4 only when some four y; are 1, 1, —1, —1 and the re-
maining three are zero; since some of these sets satisfy (7-5), we have M(¢;) = 1. Now a set
Yo=Y, = 1,9y, =y, =—1 with 2¢,(y) = 4 satisfies (7-5) when

a+b=c+d (mod7).

Denoting such a set, for convenience, byv abcd, we find the twenty-one distinct minimal
vectors: '

0126, 0135, 0236, 0245, 0312, 0346, 0413, 0456, 0514, 0523, 0615,1

7-6
0624, 1246, 1356, 1423, 1524, 1625, 1634, 2534, 2635, 3645. J (7:6)

Using (7-2), we find the minimal vectors in X co-ordinates, and the associated linear forms
(in co-ordinates contragredient to those in (8-1)) are

X1, KXoy X3, Xy Xy, Xg, XXy, X — X5, Xg—Xg,
Xo—Xy, Xo—Xg, X3—Xy, X3—X5, X3 —Xg, Xy X,

Xy tXg— Xy  Xg—Xg—Xg, X+ Xg—Xy—Xg,

XXy —X5—Xg, Xy T Xg—X5—Xg, XXy Hg—Xy— X5 —Xg.

(7-7)

From this it is easily verified that ¢ is perfect.
To establish that ¢ is eutactic, and hence extreme, it is more convenient to work with
y co-ordinates contragredient to those in (7-4). The associated linear forms are then

LY) =Yt Y=Y Yo

where a, b, ¢, d take the twenty-one values given in (7-6) and we define y, = 0.
21 6
Now Zl A3(y) = 12 gy% 42 YY)
i= i<j

since, in (7-6), each suffix occurs twelve times, and each pair of suffixes occurs twice as
(a,b) and four times as (a,c) (or (a,d), etc.). Since y, = 0 and the adjoint of ¢y(y) is a
6
multiple of 6 3 y7 —2 3 y,y,, it follows that the adjoint of ¢4(x) is a multiple of
1 i<j
! 21
i=1
Thus ¢4 is eutactic, and hence extreme.

We now consider the group g of automorphs of ¢, (which is more simply described than
the contragredient group ®). As we noted in § 3, the group g(¢,) of automorphs of ¢,(y)
has order 27! and is generated by +J and all permutations of y,,y,, ..., ;- We may thus
describe a subgroup g, of g as the set of permutations of y,, ..., y; which leave the condition
(7-5) invariant. S e .

Now (7-5) may be presented in just forty-two different forms, obtained by one or more of
the operations: (a) multiplying by any number prime to 7; () substituting for any y; in
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terms of the remaining six from (7-3). A permutation of y,, ..., therefore belongs to g if
it transforms (7-5) into one of the forty-two equivalent forms. From the forms

0Yo+ 5y, + 3y, + Y3+ 6y4+4y5+2y,=0 (mod7),
6yo+0yy + Yo+ 2y3+ 3y, +4y5+ 5y =0 (mod 7),
obtained from (7-5) by multiplying by 5 and by substituting y; = —4,—¥,—-.- —¥e
respectively, we obtain the elements
U = (4143Y2Y6Y4Y5)s B = (%?/1?/3?/3."/41/5%) ’

of g, (written in cycle notation). Since U has order 6 and B order 7, g, is thus the meta-
cyclic group of order 42 generated by U and 8.

This subgroup g, of g suffices to show that g s transitive on t/ze minimal vectors. For the
vectors in each of the following sets are clearly equivalent under {8}:

(0126, 1230, 2341, 3452, 4563, 5604, 6015),

(0135, 1246, 2350, 3461, 4502, 5613, 6024),

(0236, 1340, 2451, 3562, 4603, 5014, 6125)

(these being essentially identical with (8-6)); while under {i} we have
0126 ~ 0364 (=4603) ~ 0245.

Hence ® is transitive on the associated linear forms. Since s = N = 21, R(¢¢) has twenty-
one equivalent faces, which are most simply found by solving for p; from the relation

zazszx = Epk/lk(x)
The face of R not containing x; — x5 —x, is thus found to be
W (20): ¢i(ay) = —a13+ a6+ ag5+ 46+ 2056 = 0,
and the corresponding neighbour is
Bo(X) 4 F(— %, %3 -+ %1 X+ 2y X5+ XX + 25 %6) = $5(X)-
This establishes table 2 for ¢g.

8. ¢, AND ITS NEIGHBOURS

We have
Ba(X) = Bo(X) —F (1 2+ %y, 23 25+ Xy X+ 2y X5+ X4 X %5 %) - (81)
Applying the transformation
1 . -1 -1 —1 -1
1 -1 -1 -1 -1
1 1 1 1 "
x=3Iy=3% 1 . 1 1 Yy (8 2)
1 1 1
1 1 1
of determinant — 1/3%, we obtain
304, — 4 3y7+2 3 yy; = (Zy)* 33y} (53)
i<j

58 Vor. 249. A.
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From (8-2), X is integral when and only when y is integral and
v Y =y,=...=y; (mod3). - (84)

From (8-3) and (8-4) we find easily that M (¢4) = 1,5 = 27, and that the minimal vectors,
in y co-ordinates, are

(3,0,0,...,0), (—2,1,1,..,1), (—=2,—2,1,1,1,1),

where the prime denotes all permutations of the co-ordinates. (¢, is equivalent to $£3 of
Coxeter (1951, p. 439), as may be verified directly from these results.) In co-ordinates
contragredient to those in (8-3), we denote the twenty-seven associated linear forms by

A = 3y; (t=1,...,6),
6 .
/‘i:~§.’/k+3yi (i=1,...,6), (8:5)

6 . .
v = 29— 39— 3y (1<i<y<6).

It is now easily verified that ¢, is perfect. That it is eutactic, and hence extreme, follows
from the fact that the adjoint of (8-3) is a multiple of

12(42y7 — Z‘ YY) = DA+ Zpf + 2.

' By a now familiar argument, ® is the group of linear transformations of x,, ..., x; which
permute the linear forms (8-5) ; here X and y are connected by the relation

y=T%
contragredient to (8-2). We shall need the following elements of G

PB:  all permutations of y,, ..., s;
6
u: 3!/;“*%%;“3!/5 (Z=1,...,6);

. 6
Bigs: ¥~y (1=1,2,3), 3?4_>§.T/k‘3y5*3y6,

6 6
3y;—~> ;yk—- 3y,—3ys, 3ys—> Zlyk~—3y4-3y5-

Elements of B effect the same permutation on the suffixes of the forms (8-5). U leaves all
v; invariant and interchanges A; and g; (i = 1, ..., 6). B,,; interchanges the elements of each
pair Ay, vsg; As, Vags Ag, Vass fys Vass fas Vi35 fsy Vo5 and leaves the remaining fifteen forms in-
variant. Multiplying 8 ,,, by suitable elements of B, we obtain a corresponding transforma-
tion B;, for any indices 7, , £.

Before establishing some necessary properties of 6, we make the following definitions
(which will be used also in §9):

Two linear forms «,, k, of the set (8:5) are said to combine if there exists another form «,
which is a linear combination of them; we then say also that «, combines with «,.

All pairs of combining forms are easily found to be

A K5 Ay Vs M Vs Vs Vi
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the corresponding linear relations are
(Here all suffixes are supposed distinct.)

LemMma 8-1. (i) ® is transitive on the associated linear forms.

(ii) Under ®(A,) (the subgroup of ® leaving A, invariant), all ten forms combining with A, are
equivalent, and all sixteen forms not combining with A, are equivalent.

Proof. (i) Transitivity is easily established from the subgroup of ® generated by 3, U,
B 2s- |

(ii) ®(A,) contains all permutations of y,, ...,ys and B,,4, from which follows the equi-
valence of the forms in each of the sets

(Hgs s gy Vigs -5 V16)s  (Ags s Ags 15 Vo35 Vags +-v5 Vse)-

The forms of the first set combine with 4;, those of the second set do not.

We now turn to the faces W of R(¢,) ; we will find it most convenient to combine the two
methods outlined in § 2. We denote generally by § = («,, ..., «,) the set of forms lying off
a face W, so that S determines W. o

Following the method of lemma 2-1, we have to obtain the linear forms, denoted by
M,(u) in (2-12), which give the general solution of

6 6
S pA3+ 3 opi+ Y T, vE=0.
1 1 i<j

Such a solution is given by

p; = 3y

s (i=1,...,8),
Wyt 3} (87)

6
1

for these forms have rank 6 = s— N, and are easily verified to provide a solution. Com-

paring (8-5) and (8:7), we obtain from lemma 2-1:

Lemma 8:2. A set S of forms (8+5) determines a face W of R if and only if the forms (with signs
as in (8-5)) possess a unique linear relation which has positive coefficients.
We obtain by inspection the following three faces:

A (20) : S = (ﬂl, Has /13’ Ay ’15’ /16a Vlz)a
with relation 26, + 205+ A5+ A4+ A5+ Ag+v,, = 0
W, (24): S = (A1, iy V12)
with relation A+ pp+v, = 0;
W, (21): ‘ S = (1> s A3y Ags V12, V34) 5
with relation ' Py a3+ A+ v+ = 0.

In order to verify table 2 for ¢,, we have therefore to show that every face of R is equivalent

to one of these three.
58-2
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- Now, following Voronoi’s method, we consider the linear inequalities:

6 6
M, 241711"5’;%;‘_4%{’1;"{* 22 D=0, , (8-8)

2<j<k<6

<j<k<6

6 6
le = 4ﬁ11+41022+3217jj+81712*4§ (I’lj"‘pzj) +3 22 I’jk>0s

corresponding to A;, #,, v;, respectively, and those derived from them by all permutations
of suffixes. A set §= (ky, ...,«,) then determines a face of R when (a) equality in the re-
maining 27— inequalities (8-8) determines the ratios of the p,;; (6) this solution, with an
appropriate sign, satisfies with strict inequalities the r relations (8+8) corresponding to
KiyoeesKpe

The following identities are easily verified.

L1+L2+L3+L4+L5+L6 = M+M2+M3+M+M5+Mss (8'9)
L1+M1‘|'N23‘|‘Nz4‘|’N25+st = L2‘|'M2‘|'Nl3‘|‘Nl4+le+Nl6a (8'10)
Ly +Ly+ Ly+ Nys+ Nyg+ Nsg = My + M+ Mg+ Nyy+ Ny3+ Ny, (8:11)

These identities may be derived in the following way. The corresponding sets of six
forms on each side of the identity, e.g. (4,,...,4¢) and (4, ..., 4s) in (8-9), have the pro-
perties: (@) no two forms in the same set combine; (b) each form in each set combines with
all but one of the forms in the other set. The thirty-six distinct pairs of sets obtained in this
way clearly correspond to the thirty-six double-sixes among the twenty-seven lines on a
cubic surface, on translating ‘forms’ and ‘combining’ into ‘lines’ and ‘intersecting’.

Using the identities, we establish

LemMa 8:3. Let S be a set of forms determining a face of R. Then if S contains A,, it contains a_form
from each of the sixteen sets

(15 Pas s Pras 55 ) (812)
(’{ja :uja Viks Vis Vz'pa Viq)’ (813)
(Vz‘j’ Viks Viks My Hps ﬂq), (8‘14)

where i, §, k, I, p, q is any arrangement of 1, ..., 6. :

Proof. If S contains A;, then L, >0. Since all expressions L, M, N are non-negative, we
see that at least one expression on the right of each of (8-9), (8:10) and (8-11) is positive,
and hence that § contains the corresponding form. The lemma now follows by applying all
permutations of the suffixes.

We note that, by applying U, we obtain a similar result for forms containing some y;
we have simply to interchange A and x throughout.

We now establish systematically the three inequivalent sets § = (k, ..., ,) determining
faces of R. Clearly r<<s— N+1 =7, and r>3, since no two forms are dependent.

Since ® is transitive on the linear forms, we may take a form § = (4,,«,,...,%,). By
lemma 8-3, § must now contain a form from each of the sixteen sets (8-12) to (8-14) with
¢ = 1;andsince«y, ..., k, are at most six in number, some one of them, say «,, mustoccurin at
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least two of thesesets. Itfollows that x, must be one of y,, ..., g, V19, ..., V16. Bylemma 8-1 (ii),
these ten forms are equivalent under G(4,), and so S'is equivalent to a set (4, s, K3, ..., K,).

Applying lemma 8-3 again with ¢ = 1, we see that ks, ..., £, must include a form from the
eight sets (8:12) to (8-14) which do not contain y,, namely, (8-13) forj = 3,4, 5, 6 and (8-14)
for j = 2. Hence some one of them, say «;, occurs in at least two of these eight sets, and SO
must be one of v, (Wthh occurs in all eight sets) or

Mz Mg M5y Heo Vi Vi Viss  Vie (8’15)

If now k3 = v,,, the first linear relation (8-6) shows that S = (1;, #,,v;,), determining the
face W, (24).

We therefore exclude henceforth the set (4;, 4y, 7,,) and all equivalent sets. Now «; is
one of the forms (8-15), and these are all equivalent under ®(A;, #,) (which contains B4
and all permutations of ¥, y,, ¥5, y¢). Hence S is equivalent to a set (A, y, 3, Ky --,K,)
applying U and a permutation of suffixes, we take S in the equivalent form

(Ags Agy gy Ky -5 Ky)

Now S contains A; and so also, by lemma 83, one of v,,, V3, Va3, iy, ls, g S Cannot contain
V13 OF Vyq, since the sets (A;, 43, v;3) and (A,, 43,v,3) are dependent. Hence S contains one of
Vi Mas Mss e and these are equivalent under ®(A;,4,, ;) (which contains 8B,,, and all
permutations of y,, ¥, y¢). Thus we may take x, = 4, and

S - (/11, Az,ﬂ3,ﬂ4, K5, ooy Kr).

Reasoning as above, we see that § cannot now contain any of v5, ¥4, Vo3, Vo4 Applying
lemma 8:3 with 7 = 1, we find just three sets which contain none of the known four forms
in §; discarding v,s, v,, from them, we obtain

(Ass 55 V125 V16)s (s s Vios Vis)s  (Vags Moy Hss M) - (8'16)

Since also 4, belongs to S, we obtain similarly (after discarding »,; and v,,)

(’15, H55 V12 V26): (’16> Hes V12s V25)} (V34’ H1s Bs» ﬂﬁ) . ('8' 17)

We now have at most three forms «;, ..., £, which must include a form from each of the six
sets (8:16) and (8-17). Hence «;, say, must occur in at least two of these sets, and so must be
one of A, fs, Ag, He, V1o- These five forms are equivalent under (4, Ay, 43, 4,), and so we

k .
may take S = (A5 Agy fay flgs fhiss Ky +++5 K+

Of the sets (8:16) and (8-17), all are now accounted for except (A, V19,V1s5),
(Ags Hos V125 Va5)- Since S cannot now contain v,; Or vy, it must therefore contain at least one
of Ag, fhg, V1a- '

If now S contains A, we obtain the dependent set (4, Ay, g, g, 5, 6), which is equivalent,
by the transformation UB,q, tO (4, o, A3y A4y V19, Vs4), determining the face W (21). Other-
wise S contains one of g, v;,, which are equivalent under 8,5 (which leaves the five known
forms of § invariant). Thus we may take

= (A1, Ag, fhg, fhys Mss fhes K7) .

(A further form «; must appear, since the first six forms are independent.)
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- We conclude this analysis by showing that «; = »;,. Since gz belongs to S, lemma 8-3
shows that § contains one of the forms v,,, V14, Vg, A5 44> 5. But S cannot contain any of
V1es Vag» A3, Ay, A5, in view of the dependent subsets (4;, #g, V16)s (A1, Ags K4y 55 #6 A3) (and similar
ones obtained by permuting suffixes). Thus § contains v, and so

S == (A1, Ay, fha, s s Mg Vlz), ~ (s s A3y Ags A5, Ag, V1),

determining the face W] (20).

It remains for us to show that the neighbours of ¢, along the faces W, (20), W, (24), W, (21)
are equivalent respectively to ¢,, ¢,, ¢5. The explicit equations of these faces are easily found
by the method of lemma 2-1 (the coefficients a, having been established above). We obtain

Y1(X) = — 2 %+ Xy 2y Ky X5+ K3 Xg 5y X5+ 5 K5+ %5 %,

¥a(X) = 2xF -+, Xy -+ 2% X3+ 2% Xy 2% X5+ 2y Ko+ X3 Xy Xy X5+ Xy Kg+ Xy K5+ Xy X+ X5 %,

¥s(X) = %5
Then we obtain the corresponding neighbours

Ji(X) = ¢4(X) +391(X) = go(X) — 1%, = ¢1(X);

Jo(X) = ¢4(X) +3Y5(X) = Go(X) + 5, (%) -+ x5+ 2, x5+ %) ~ Bo(X) — 2, 25—, %5 = $(X),
under the transformation x; ——x; — ¥, — x5 — X, — %5 — X,

S3(X) = 94(X) +495(x)
= Po(X) — (0, %, + 235, + 2305+ 23 %6+ %4 %5 -+ %4 %) 5
but this is the form (4:13) (with p = }), which was shown in §4 to be equivalent to (49),
i.e. to ¢5(X).
9. @, AND ITS NEIGHBOURS

Following Voronoi, we define for n = 6,7, 8

$2(X) = Po(X) — 1%, — %, %5. (9:1)
Making the transformation x = Fy:

n . n ' n .
3x, =,§yka 3xy = ??/k""3y2> 3x3 = ;!/::*3?/3, x=—y; (i=4,..,n), (92)

of determinant —%, we obtain

18¢, = 8§y3—2zjyiyj = (9—n) 3yi+ 2 (4—9)" (9-3)
i< i<j
(9-2) and (9-3) give at once D(¢4,) = 22—_;

In (9-2), x is integral if and only if y is integral and satisfies
S4=0 (mod3). (9-4)
1

From (9-3) and (9-4) we find easily that M(4,) = 1 and that the minimal vectors are, in
y co-ordinates,

(1,-1,0, ..., 0), (1,1,1,0,...,0), (1,1,1,1,1,1,0, ...,0), (95)
' (2,1,1,1,1,1,1, 1)’ (9-6)
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(where the prime denotes all permutations of the co-ordinates, and the sets (9-6) exist only
for n = 8). Thus

() ) omone

(in agreement with Coxeter (1951, p. 420), where the form is denoted by E,). It is easily
verified from this result that ¢, is perfect. ‘

We now restrict ourselves to the case n = 6, s = 36. The associated linear forms, in
variables contragredient to those of (9-3), are '

i =Y —Y; (1<i<y<6),
Mg =Y+ Yty (1<i<y<k<6), _ (9-7)
6
V=2

i=1

The adjoint of (9-3), for n = 6, is a multiple of
6
o(y) = 163 y7+83 y;y; = TG+ Zpfy +17,
1 i<j .

so that ¢, is eutactic, and hence extreme.

We now consider the group ®. Arguing as before, we see that ® is the group of trans-
formations of #,, ..., ¥, which permute the associated linear forms (9-7). Here x and y are
related by the transformation y = I'X contragredient to (9-2). It is easily verified that the
following transformations belong to ®:

PB: all permutations of y,, ..., ¥g;
18 .
R: %‘"5%%“% (i=1,...,6).

B leaves v invariant and induces the corresponding permutation of suffixes in Aijs Mg
R leaves v and each A; invariant, and interchanges p;; and 4, (for any arrangement
iy...,nof 1,...,6). , '

We use the idea of combining forms introduced in § 8. All combining pairs are: (i) v and
Hixs (i) two #’s with two or no common suffixes; (iii) two A’s with one common suffix;
(iv) a A and a g with one common suffix. The corresponding linear relations are (with suit-
able signs in each case)

Vb gt s = 05 Pyttt = 05 Ay Ay + Ay, = 0.
Lemma 9-1. (i) @ is transitive on the associated linear forms.
(ii) ®(v) contains* P and R and has transitive systems (A;;), (4jx)-
(iil) Any set of four or five forms, every pair of which combines, is equivalent to (v, 93, fy545 H155)

or (V5 123 12> 1 25» Hrze) Tespectively.
Proof. (ii) is clear from our above remarks. To prove (i), it therefore suffices to exhibit

elements I,, T, of ® with T,(A;,) = v, T,(#153) = v. We may in fact take

Ty ARy, A28 Hay Ry — Xy — K5 —Xg, A3 X, G X Hx =% (6= 4,5,6);
Fy: X, 2%) F Xy FXg— Xy —Xg—Kg, Xog—>—Ry Xg—>—Xg, X—>x—% (1=4,5,6);

SinCC Alz == xz, lu123 = xl, V= 2xl +x2+x3_x4“xé—x6.

* ®(v) is in fact generated by B, R and —3J.
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For (iii), let § = (KysKyy ---5k,) (r =4 or 5). By (i), S is equivalent to a set (v,«,, ...,K,);
and since all «; combine with v, they are all u’s. By (ii), S~ (v, #123, K35 - .-, &,). Now ;3
cannot be y,56, since no other y;, can combine with both g,,; and #,56. Thus k3 must be one
of fygis s> Moz (1 =4,5,6), and these are clearly equivalent under &(v,4,,3). Hence
S~ (¥, 123y 124y Kas -5 Ky) -

Now «, must be one of p155, ft156 H1345 IS0 (V; 13, 124 125) ~ (V; sy frogs f126) Under
interchange of ys, ¥, While (, ft153, 124> H125) ~ (Vs H123: H124> M134), Using R and a suitable
element of P. Hence, for 7 = 4, S~ (v, 4193, #1245 #125), s required. For r = 5,

S~ (1, fy93s 1945 1255 K3) 5

where clearly «; can now only be g,,¢. This proves the lemma.

We now proceed to the determination of the inequivalent faces of R = R(¢,). As in §8,
we denote generally by S the set of forms lying off a face W of R, and so determining W; such
a set we call a face-set.

The method of lemma 2-1 is not as useful here as with the previous forms, since the
analysis of linear relations among thirty-six forms in twenty-one variables is very tedious.
It was of practical use here in (a) obtaining a large number of faces by inspection; ()
checking quickly whether-or not a given set of forms can be a subset of a face-set. The relevant

relation \ \ \
. ‘O‘ij’lz‘j*', z Bisu i +yv2=0 (9-8)
i<j i<j<k

(identically in y,, ..., y,) yields the twenty-one equations*

ZOLU'I-Eﬂijk—F)’:O (i=l,...,6), (9-9)
J J.k .
_“ij+§ﬁijk+7 - O (2,j = l, ceey 6) (9.10)

(where, for convenience, we disregard the order of the suffixes). Summing (9-10) over j

and using (9-9) we obtain
2 fyet2r =0, (9-11)
J»

2 a;—y =0. (9-12)
J

From (9-12) we deduce the useful result:

LEMMA 9-2. No set (ky, Ky, ..., k) can be a subset of a face-set S if it has the properties: (a) k,
combines with none of ko, ..., Kg; (b) all pairs from k,, ..., kg combine.

Proof. By lemma 2-1 and (9-12), S cannot have a subset (v, 45,43, 4,4, 4;5,4;6). Now, by
lemma 9-1 (iii), all sets (k,, ..., kq) satisfying (#) are equivalent, and hence are equivalent to
(A195 4135 A145 4155 A1) 5 and under this equivalence relation, we must have «; ~ v, since v is
the unique form not combining with any of ,,, ..., ;. The lemma follows at once.

In the main we shall use Voronoi’s method, along precisely the same lines as in §8.

* Professor Room suggested that a complete solution of (9-9) and (9-10) could be found from the table of
synthemes used by Baker in his discussion of the Pascal figure [Principles of geometry, vol. 2, p. 221] (see
appendix).
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We have the thirty-six inequalities

Lij:l’ii+ﬁjj~2[),~j>0 (1<i<j<6),
My, = Pu-tbys+ Dot 2+ a+ 2n>0  (1<i<j<k<6),

6 (9-13)
N = ?Pﬁ"‘Q 2 ;=0,
N i<j

arising from A;;, 4, v respectively. We simplify the algebra by setting

w=3p; (1=1,...,6), ;= putp;;—2b; (= vji) (1), (9-14)
whence L; = v, \
Mjk = U Uy U — Vg — Vi — Vs (9-15)
N - 2Eui~ z 'l),-j.

i<j
We find the following identities (which are easily built up, as in § 8, by considering com-
binations among the corresponding forms):

, N-+Ljy+ Lgy+ Lyg = Myz5+ Myyg+Mogg -+ Moy,
Lyy+ Lyy+Mygs+ Myys = Lyg+ Lyy+ M35+ Myys,
 N+Myyg+Liy+Lig+ Lys+Lyg = Ly + Mg+ Mgy + Mgy + Mygg+ Mygs.
From these, and those derived from them by permuting suffixes, we derive (as in § 8):

LemMa 9-3. Let S be any face-set. Then
(1) IfvesS, S contains a form from every set

(items Mitns Hikns /‘jzm) . (9-16)
(ii) IfvesS, S contains a_form from every set
(’Iij? Pk Bijts Prams Pokins Himn)+ (9-17)
(iii) If g€ S, S contains a form from every set
(Xis Ajms Hisks Bjmie) - (9-18)
(iv) If A€ S, S contains a form from every set ‘
(A ’ljl” Hikms /‘jlm) . (9-19)

In each case, the suffixes 4,7, ... are supposed distinct but otherwise arbitrary.

For convenience of printing, the triple ik will be written for g;,. It will also be convenient
to interpret the subgroup B of G as the permutation group on the suffixes 1,2, ..., 6 and to
write elements of B in cycle notation; we shall further denote the permutation group on

isJy .- K bY (45, ..., k)"
We now examine the implications of lemma 9-3 (i), and prove
LEMMA 9+4. Any set of forms p, which contains a form from each of the sets (9-16) has a subset
equivalent, under the group {P, R}, to one of S '
T, = (123, 124, 135, 145, 236, 246, 356, 456),
T, = (123, 124, 125, 134, 136, 245, 256, 346, 356, 456),
T, = (123, 124, 125, 126, 134, 135, 246, 256),
T, = (123, 124, 125, 126, 134, 135, 234, 246),
T, = (123, 124, 125, 126, 134, 135, 136),
T, = (128, 124, 125, 134, 135, 145).

59 VoL. 249. A.


http://rsta.royalsocietypublishing.org/

L

Y |

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

486 : - E. S. BARNES ON THE

Proof. From any such set, we can choose a subset 7" which satisfies the condition minim-
ally, i.e. contains no subset satisfying the condition of containing a form from each set (9-16).
We prove the lemma by showing that any ‘minimal’ set 7" is equivalent under {3, R} to
one of T}, ..., Ty (which are easily verified to be minimal).

(i) We first show that 7" has a subset equivalent to (123,124). By lemma 9-1 (ii),
T~ (123,...). T contains one of 124, 135, 236, 456, and clearly 124 ~ 135 ~ 236 under
{(1,2,3), (4,5,6)'}. Hence either T~ (123,124, ...), as required, or T ~ (123, 456, ...).
In the latter case, any further triple has two suffixes in common with either 123 or 456, and
so once again 7T has a subset equivalent under P to (123,124).

Passing to an equivalent set, we may now take

T = (123,124, ...).

(ii) Suppose now that 7" has no subset ~ (123,124, 125); we show that then 7'~ 7.
By lemma 9-1 (iii) (since {3, R} leaves v invariant) T can contain no three forms every
pair of which combines. Thus now

125,126,134, 234 ¢ 7.

T contains one of 135, 146, 236, 245, and these are equivalent under {(12), (34), (56)},
which leaves (123, 124) invariant; hence we may take 7" = (123,124,135, ...). Now

136,235 ¢ T.
T contains one of 125, 136, 234, 456, and so contains 456:
T = (123,124,135, 456, ...).
T contains one of 125, 134, 246, 356, and so one of 246, 356 ; since 246 ~ 356 under (23) (45),
we may take T = (123,124,135, 456, 356, ...).
Now 156, 256, 345, 346 ¢ T

T contains one of 125, 136, 246, 345, and hence 246; it also contains one of 126, 145, 235,
346, and hence 145. Thus now

T = (123,124, 135, 456, 356, 246, 145, ...).
Finally, T contains one of 134, 156, 236, 245, from which 236 is now the only possible

choice. We therefore have 7' = T;.
We need now consider only sets equivalent to

T = (123,124,125, ...). (9-20)
(iii) Suppose next that 7, given by (9-20), contains no subset equivalent to (123,124,
125,126) ; we show that then 7'~ T, or T~ T;. We note first that the known subset (123,

124, 125) of T is invariant under the group {(12), (3,4, 5)'}.
(a) As a first step, we show that 7 is equivalent to a set

(123,124,125,134, ...).
For, if not, certainly 134 ¢ T'; using the above group, we see that therefore

134,135, 145, 235,235, 245 ¢ T.
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Now T contains one of 126, 134, 235, 456; and 126 ¢ T, by our initial assumption. Hence
456 € T'; from the group {(12), (3,4, 5)}’, we have also 356 €T, 346 ¢ 7. Thus now

T = (123,124, 125, 456, 356, 346, ...).

It is now easily verified that no further triple can belong to 7, in particular, none of
134, 156, 236, 245; and this is impossible.

Thus now we may take T = (123,124,125,134, ...). (9-21)
(b) Suppose now that 135 €T, so that
T = (123,124,125,134,135, ...).
By our original assumption, 126, 234, 136,235 ¢T

(each of these giving a subset ~ (123, 124, 125, 126)).

All sets (9-16) are now accounted for with the exception of (126 145,234, 356),
(126, 145,235, 346), (136, 145,235,246), (136,145,234,256). If now 1457, we have
T = Ti. If, however, 145 ¢ T, we see that T contains all of 356, 346, 246, 256:

T = (123,124,125, 134, 135, 356, 346, 246, 256, ...).

But now 123 is redundant (since every set (9-16) containing 123 also contains one of
346, 356, 246, 256) ; thus 7" cannot be minimal.

(¢) We have, finally, to consider here sets (9-21) not containing 135 (or, by our original
assumption, 126). Since the known subset (123,124,125,134) is invariant under
{(34),R(16) (25)}, we therefore have

126, 234,135,145 ¢ T.

Since T contains a form from each set (126,135,234, 456), (126, 145,234, 356), we have
at once 456 €7, 356 €7,
T = (123,124,125, 134, 456, 356, ...).

T contains a form from each set (126, 135, 245, 346), (126, 145,235, 346), and hence one
from each pair (245, 346), (235, 346). If both 235, 245 €T, 134 is redundant and 7 is not
minimal. Hence 346 ¢ 7. Applying the group {(34), R (16) (25)}, we see that also 256 €7,
and so now T — (123,124,125, 134, 456, 356, 346, 256, ...).

The set of eight known forms of 7" is invariant under {(34), R, (16) (25)}.

Of the sets (9-21), (135,146,236,245) and (136, 145,235, 246) are still not accounted
for. As above, T cannot contain 135 or 145; and, applying the group {(34), R, (16) (25)},
we see that 7 cannot contain 246 or 236. Thus 7 contains a form from each pair (146, 245),
(136,235). Since 136 ~ 235 under R(34), we may suppose that 136 € 7. If now 146 €7, it
is easily verified that 125 is redundant (every set (9-21) which contains 125 also contains
one of 456, 356, 136, 146). Hence finally 245 ¢ T"and we have T = T,.

(iv) These results show that we may henceforth confine ourselves to sets of the form

T = (123,124,125,126, ...).
59-2
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Now T contains one of 134, 156, 235, 246, and these forms are equivalent under
{(12), (3,4, 5, 6)'}; hence we may take

T = (123,124,125,126,134,...). | (9-22)
(a) Suppose first that 135 €7,
T = (123,124, 125,126, 134,135, ...).

T contains a form from each of the sets (136, 145,234, 256), (136,145,235,246). Clearly
145 ¢ T, since otherwise T has Tj as a proper subset and so is not minimal. Also, if 136 €7,
we have at once T" = 7;. There remains only to consider the case when 7 contains a form
from each pair (234, 256), (235, 246). ‘

Now T cannot contain both 234 and 235, since otherwise it has the proper subset
(123, 124,125, 134, 135, 234, 235), which is equivalent to 7; under R(16) (25) (34). Hence
T'must contain one of 246, 256 ; and these are equivalent under (45), which leaves the known
subset (123,124, 125,126, 134, 135) of T invariant. Hence we may take

T — (123,124, 125,126, 134, 135,246, ...).

Now T contains one of 234, 256, from which we have at once T=T, or T = T,
respectively.

(b) Suppose, finally, that 7, given by (9-22), does not contain 135. Since the known
subset (123, 124, 125,126, 134) of T is invariant under {(34), (56)}, we may suppose that

135,136,145,136 ¢ T" (9-23)

T contains one of 136, 145, 235, 246, and hence one of 235, 246. Since 235 ~ 246 under
{(34), (56)}, we may take
T = (123,124, 125,126, 134,235, ...).

The set (123, 124, 125, 126, 134, 235) is invariant under (12) (45); hence, from (9-23), we
see that also 234,236, 245,256 ¢ T.

But now 7 cannot contain any form from the set (136, 145, 234, 256), which is impossible.
This completes the proof of the lemma. :
Our object is now to specify, as far as possible, a unique representative of each class of
equivalent faces of R. Such a specification is dlfﬁcult but the following result goes a long
way in this direction:

LemmA 9-5. Every face-set is equivalent to a set S with the following properties:
(1) S contains v;
(ii) S contains p forms A and q jbrms ,uuk, where

p+q<15;

(iii) The number of forms of S which do not combine with any given form of S is at most p.

Proof. (i) is clear, since ® is transitive on the associated linear forms. (ii) is true whenever
(1) is, since S can contain at most s— N+ 1 = 16 forms. ,

Finally, we observe that if S is transformed so that any particular form, «, is transformed
into v, then a form not combining with « is transformed into a 4;;, and one combining with
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x into a 4;,. Hence property (iii) may always be achieved by transforming into » that form
of § which fails to combine with a maximum number of forms of §.

Henceforward, then, we need consider only face-sets S satisfying the condition of lemma 9-5.

Since ve S, lemmas 9-3 (i) and 9-4 show that, after applying a suitable transformation
of (v), § has a subset (v, T;) for some ¢ = 1,2, ..., 6. Since these six cases are not mutually
exclusive, we eliminate repetition by considering each case: (v, ;) CS, under the assumption
that S has no subset equivalent under G(v) to (v, T;) for any j<i.

We shall show, in the following six lemmas, that all face-sets S satisfying these two
conditions are equivalent under G(v) to one of the following sixteen sets (where we have
included in brackets the number of forms in each set) :

Sy(11) = (1, Ay g5, Ayq, 123, 124, 125, 126, 134, 135, 136),
S5(18) = (¥, A1y Aygy Adgs Aggs Ags, 123, 124, 125, 134, 136, 245, 256, 346, 356, 456),
SS(IG) = (V: /114’ /115’ /1233 ’1243 /125> /134’ ’1353 123, 1249 125: 126’ 134: 135: 136’ 236)a
8,(8) - = (v, 123, 124, 125,134, 135, 145),
S5(12) = (v, dyg, Ay, Ays, 123,124,125, 134, 135, 145, 126, 345),
Ss(14) = (¥, 14 Aus Ayg» Agss Agsy 123, 124, 125, 126, 134, 135, 234, 246),
S7(16) = (v, A1 Ay, A5 Aags Agas Ags, Ausy 123, 124, 125, 126, 134, 135, 246, 256),
S5(12) = (v, Aygy Ags, sy, 123, 124, 135, 145, 236, 246, 356, 456),
So(16) = (1, A145 iy Ay Aggy g, A5, 123, 124, 125, 126, 134, 135, 246, 256, 456),
S10(18) = (¥, Aggy gy, Agsy Agys Ags, 123, 124, 125, 126, 134, 135, 136, 145, 236),
S11(16) = (1, 4145 Aygs Aagy Az, Asay Ase Agsy 123, 124, 125, 126, 134, 135, 234, 246),
S5(16) = (1, 14y gy A3e Aus Aug> 123, 124, 125, 126, 134, 135, 246, 256, 156, 234),
S5(18) = (1, X145 Aggs Aggy Age Ausy 123, 124, 125, 126, 134, 135, 136, 145, 245, 345),
S5(12) = (1, Aygs Aggy Ag, 123, 124, 125, 126, 134, 135, 246, 256),
Se(14) = (1, A1gs Aysy Ao, Agg, Ags, 123, 124, 125, 126, 134, 135, 136, 245),

[0(15) = (9, Ay45 Aygy Agg, Ay, A5, 123, 124, 125, 126, 134, 135, 246, 256, 346).

The first eleven face-sets S, ..., S}, are in fact inequivalent under the full group &; and
we shall later show (lemma 9-13) that the last five are equivalent to the corresponding
unprimed sets.

Lemma 9-6. If S contains (v, T}), then

S~ 8g = (v, A16 Ag55 434, T1).
Proof. We have

(v, T}) = (v, 123, 124, 135, 145, 236, 246, 356, 456),

and G (v, T}) contains § = {R, (16), (25), (34), (12) (56), (13) (46), (23) (45)}, under which
all remaining twelve y;, are equivalent.

() Suppose first that § contain no further y;,. By lemma 9-3 (ii), $ contains a form
from the set (1,4, 126, 156, 235, 245, 134), so that § contains 4,5 Applying §), we see that .S
contains also 1,5 and A,. Thus § = S, as asserted.
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Henceforward, then, we may assume that §' contains some further 4;,, and therefore
that 125¢€.S, (v, T,, 125) C S.
We note that 6 (v, 7, 125) contains §' = {(25), (34), R(16) (23) (45)}, under which
126 ~ 156 ~ 245 ~ 235.
It is easy to show that / 134 ¢S.

For, if 134 €.5, then 134 fails to combine with 125, 236, 246, 356, 456, so that
p=5, ¢<15—p<10.

Since § already contains ten y;;, we require ¢ = 10, p = 5, and § can contain no further
;- Now S contains one of (1,4, 345, 234, 146, 136, 256) and 5o 4,4¢ S. Thus $ has as a proper
subset the face-set S, = (v, d;4, 75), which is impossible.

(ii) Suppose now that also 346¢ S, so that

(v, T}, 125, 346) C .

® (v, T}, 125, 346) contains {R, (25), (34), (16) (23) (45)}, under which all of 126, 136, 146,
156, 234, 235, 245, 345 are equivalent, and 134 ~ 256. If now § contains any further g,
we may suppose it to be either 126 or 134. As above, 134 ¢ §. Also, if 126 € 5, we have ¢>11,
whence p<4; but 126 fails to combine with 135, 145, 346, 356, 456, whence p>5. This
contradiction shows that S contains no further .

Since S contains one of (1,4, 126, 156, 235, 245, 134), we have

A;6€S.

Since 123¢ S, lemma 9-3 (iii) shows that .S contains one of 1,4, 455, 134, 235, and hence
one of 4,4, A,5. Applying the above group, we see that § contains a form from each pair

(/1143 /125)9 ‘(/113’ /125)9 (/156’ /134)9 (/126) /]‘34) .

Now clearly not both 1,5, 13, belong to S, else § has S as a proper subset. Since A5 ~ A5,
under (16) (23) (45), we may suppose that A,;¢ §; then § must contain both 1,4, 4,5 and we

have : (V> /116a /113) /114: T;) 1253 346) C S‘

We now show that this is impossible.

In the given subset of S, each of the ten forms 4,5, 4,,, 123, 124, 135, 145, 236, 246, 356, 456
fails to combine with five other forms; hence p>5, and, since ¢ = 10, we must have p = 5.
This means that any further form of § must combine with all ten forms above. The only
such form is 1;,. But this means that § contains at most four forms A;;, p<4; a contradiction.

(iii) Suppose next that 346 ¢ S. We note that all our conditions are still invariant under
8. Now S contains a form from each of the sets

(A5, 126, 156,235, 245,134), (A5, 235, 245, 134, 346,126), (A, 134, 346, 126, 156, 235).

Since 346 ¢ S, by hypothesis, and 134 ¢ .5, it follows that eitker S contains one of 126, 156, 235,
245 or S contains all of A,¢, A,5, A3, The latter alternative is impossible, from the subset Sj.
Hence S contains one of 126, 156, 235, 245; since these are all equivalent under §’,

we may suppose that (v, T, 125,126) C S.
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Now ¢>10; also p> 5, since both 356, 456 fail to combine with five other forms of §. Hence
b =5, ¢ =10, and § contains no further y;,. Also since p = 5, all further forms in S (which
must be five A;;) must combine with both 356 and 456; in particular, § cannot contain any
of Ay, Ay45 Ase:

Now 123€S and so, by Lemma 9-3 (iii), S contains one of (44,155, 134,235); hence
Ay5€ 8. Similarly, since 135€., S contains one of (134, A56, 134, 156) ; hence A5,¢ S. But now
125 fails to combine with six forms of S, viz. A,5, 454, 236, 246, 356, 456, contradicting p = 5.

This contradiction shows that this case is impossible, and the proof of the lemma is
complete.

LemmMa 9-7. If S contains (v, T,), then
S =8y = (1, A15, 4165 Aas; 2> Asgs> T3)
Proof. The given subset
(v, T,) = (v, 123,124, 125,134, 136, 245, 256, 346, 356, 456)

isinvariant under the subgroup §) = {R, (12) (35), (13) (26), (23) (56)} of ®(v), under which
all y;;, in the subset are equivalent. Since 123 fails to combine with the four forms 245, 256,

346, 356, it follows that (i) every g, in (v, T;) fails to combine with four forms of the subset;

and (ii) p>4.

We now show that § contains no further g;;. For if it does, then certainly ¢>11. Also,
the added g, cannot combine with both 123 and 456, whence p>5 and so ¢<10; a con-
tradiction.

Since 123€.5, lemma 9-3 (iii) shows that § contains one of A5, 1,4, 135, 234, and so one of
A5, Ayg. Continuing this argument, and using the group §, we find that S must contain a

form from every one of the twenty pairs 4;;, 4, with distinct suffixes chosen from

/114’ ’124a ’134> /1459 ’146’ /ll5a /116, ’1239 ’126’ ’135'

Now S cannot contain all five A, (: =1, ..., 6), since, by lemma 9-2, it cannot have a
subset (414 ..+, 45, A46). Since all 4;, are equivalent under §), we may suppose that, say,
A,4¢S. As was just shown, S contains a form from each pair (4,,, 1123) (145 Asg) (AM, As5), and
so S contains Ayg, Agg, Ags.
If now A,5¢ S, S must contains all of A,4, 434, A4, Which is 1mp0551ble, since it would give
$>=6, p+g>16. Hence ;¢ §; similarly, A,5¢ S. This now gives at once § = S, as asserted.

Lemma 9-8. If S contains (v, T;) (but no subset equivalent under ® (v) to (v, Ty) or (v, T,)) then
S is equivalent to one of )
S5 = (v, A16 Aggs A3 T3),

Sy = (0, A145 A5, 165 Aags Aoy Aoy Aysy T)s
Sw = (¥, A145 X165 Ag3s Aoy Aysy T, 346),
/114’ A159 /116? /124’ /1259 /145’ 7;33 456)’

= (v,
- : S2 = ( ’114’ ’1167 ’1367 ’1457 ’146a T.:b 234; 156)'
Proof. We have ~
v, Ty) = (v, 123,124, 125, 126, 134, 135, 246, 256)

and & (v, T3) contains the group § = {(45), (12) (36)}.
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(a) Suppose first that : gy g3 S.

Since A;4¢ S, 145¢ S (else S has the face-set S, as a proper subset) ; applying §), we see that
also 245¢.S. Thus 145¢S, 245¢S.

If now A;4¢ S, we have at once § = S3, as required. We may therefore assume that
A3 S.

Since 184¢ S, lemma 9-3 (iii) shows that S contains a form from each set (4,5, 436, 145, 346),
(A36, Ays, 136, 145), and so one of (4,5, 346) and one of (4,5, 136). Applying $) we see that §
contains a form from each pair:

(’115, 346), (/125, 346): (’114’ 356), (/124a 356), (/145’ 136)a (’1452 236)' (9°24)

If now A,5¢ S, S must contain both 136 and 236, and this is easily seen to be impossible.
For then we have ¢>10 and so p<5; also each of 136, 236 fails to combine with five forms
of (v, T;), so that p=>5. Hence p = 5, ¢ = 10 and S contains no further 4;,. But then, from
the pairs (9-24), it follows that S contains all of A;5, Ay5, 4,4, 454; thus now 136 fails to combine
also with A,g, Ay, giving p>7; a contradiction.

Thus A5€ 5. From the remaining four pairs (9-24), we find three inequivalent possi-
bilities:

(i) S contains both 346, 356; this must be discarded, since then S contains a subset
~ (v, T;) under (35).

(ii) S contains just one of 846, 356. Since 346 ~ 356 under §), we may suppose that

346¢ .5, 356¢ 5. From the pairs (9-24), we see that § contains A;, and A,,, so that § = §j,

as required. ,
(iii) S contains neither of 346, 356. Then S must contain all of A5, g5, 414, Ay, giving

S=8;. :
() 7Suppose next that Aig€S, AyéS.
By lemma 9-3 (ii), S contains a form from each set
(Ayq, 146, 156, 245, 345,236), (1,4, 234, 235, 145,456, 136).
Also, since 124¢€ S, S contains one of | ’
| (A6, Ass, 146, 234) ;
and, since 125¢€ .S, one of (Ay6 Ag35 156, 235).
Thus now S contains a form from each of the sets
(146, 156, 245, 345,236), (234,235, 145,456,136), (146,234), (156,235).  (9:25)
Now 146 ~ 234 under $, so we may suppose that
234¢S.
We show that it is now impossible that 235¢ S. For, in this case, we should have
(v, 123, 124,125, 126, 134, 135, 246, 256, 234, 235) C S,

where each of 135, 246 fails to combine with four other forms of the subset. § must still
contain a form from the first set (9-25), so that ¢>>11 and p< 4. Itfollows thatg =11, = 4,
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and all further forms of §' must combine with both 135, 246; no 4, satisfies this condition,
in particular none of (146, 156, 245, 345, 236).
Thus 235¢ .S and so, from the last pair (9-25), 156 .S. Thus now

(v,123,124, 125, 126, 134, 135, 246, 256, 234, 156) C S,

and ¢>10, p<5. We see that S can obtain nofurther g, (since this would give p>5, ¢>11,
precisely as above).
~ Since 126€ S, S contains one of (A4, 1,3, 146,236) and hence A,,; applying the trans-
formation (12) (36) (45) (which leaves the given subset of § invariant), we see that also
Ay5€ 5. But now 256 fails to combine with the six forms A, , 455, 123, 124, 125, 234 of S, giving
p>=6; a contradiction.

(¢) Suppose finally that S contains just one of the forms 4,4, 453. Since 4,5~ Ay5 under 9,

we may suppose that LeeS, AodS
16 > 23 °

Since A,4¢ S, we have, as in (a), 145¢ S ,
As in (), § must contain one of (1,5, 234, 235, 145,456, 136) and so now one of
(234, 235, 456, 136). (9-26)
(i) Suppose 234¢ 5, 235¢S5.

Now since 124€ S, S contains one of (4,5, 4,3, 145, 234) and hence A,5; applying (45) (which
leaves all our conditions invariant), we have also 1,,€S.

Now § contains (v, A4, A;5, 416 123,124, 125,126,134, 135), and so 136¢S from the
face-set S;. From the set (9:26) we see that therefore 456¢ S, and now

(0, 105 Ay, A1, 123, 124, 125, 126, 134, 135, 246, 256, 456) C S. (9-27)

It is easy to see that S can contain no further iir For if it did we should have ¢>10 and
so p<5; since each of 134, 135, 456 fails to combine with five forms of the subset (9-27),
we should require p = 5 and therefore that the added M combine with all of 134, 135, 456.
The only triple fulfilling this requirement is 345; this fails to combine with six forms of the
subset (9-27), and its presence is therefore incompatible with p = 5.

Since 134, 246, 256 belong to .S, lemma 9-3 shows that § contains a form from each of the
sets (Ay5, A3q, 136, 145), (Ays, A3, 245, 346), (Ayy, Asg, 245, 356). Since S contains none of the
triples occurring here, it must contain a A; from each pair (d45,35), (A35,436), (Ap45436)-
Thus etther S contains all of A5, 455, A5, or S contains Asg.

The first alternative gives at once § =.S,. The second also gives a face-set wh1ch is
inadmissible here; for it contains only four A, whereas p>5, since 456 fails to combine
with five forms of S.

(ii) We may now suppose that S contains one of 234, 235. Since these are equivalent
under (45), we may take 934¢ S,

i

Thus we have now
(v, Ay, 123, 124, 125, 126, 134, 135, 246, 256, 234) C.S,

while 1,3¢ S, 145¢ S. (The set (9-26) is, of course, now accounted for.)
Now 234 fails to combine with A, 125, 126, 135, 256, so that p>>5. It follows that ¢<<10
and hence that § contains at most one more ;. Since 125 and 126¢ S, S contains a form

60 Vor. 249. A.
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from each set (Ayg, A4, 235,145),(A55, 4,4, 236,146); since A,3¢.S and § contains at most
one more 4, we require 4,,€ .5, and
(v, Ay4, A, 123, 124, 125, 126, 134, 135, 246, 256, 234) C S. (9-28)

Suppose first that § contains no more ;;; then ¢ = 9 and p<<6. Since 126, 246, 256¢ S,
$ contains a form from each of (1y3,4,5, 236, 156), (153, A45, 236, 456), (A3, 446, 235, 456), so
that § contains all of A;;, 4,5, A4 Also, since 246,256¢S, S contains one of each set
(Agss A3g> 245, 346), (Ayy, Agg, 245,356), and so one of each pair (Ay,Ags), (A Agg). Thus
either Agge S, when A5 fails to combine with the seven forms v, 125, 135, 246, 234, A4, A6
of §, contradicting p<<6; or both 1,5, ,4¢ S, giving seven forms 4; in §' and again contra-
dicting p<6.

Suppose next that § contains one more x;,; then ¢ = 10 and p < 5; as above, p>5, so
that now p = 5. Since both 256 and 234 fail to combine with five forms of the subset (9-28),
it follows that all further forms in S combine with both 256 and 234. In particular we see that

A5, 145, 346, 456¢ S.
Since § contains 134, 126, 246 and 256, it contains a form from each of the sets
(/115a /136’ 145, 346): (’123’ /1159 236: 156)9 (’1235 ’145’ 235, 456)’ (’1233 ’1465 235, 456) 5
hence § contains 434 and a form from each pair
© (236,156), (A5,236), (A, 235).

Thus either S contains 236 and 4,4, when A,, fails to combine with the six forms v, 124, 134, 256,
A36, 236 of S, contradicting p = 5; or S contains 156, A,; and A g, giving S = S.

Lemma 9-9. If S contains (v, T,) (but no subset equivalent under & (v) to (v, T)) for i<4), then
S' s equivalent to one g

1 one of S11 = (¥, A14, A165 Aa3s Aass Asas Asgs Assy 1)

Se = (v, A145 15 A165 Aoy Ays, 1)
Proof. We have S
(v, T,) = (v,123,124, 125,126, 134, 135, 234, 246),

and ®(v, T;) contains §) = {(12) (34) (56), R(15) (26)}. Since we obtain immediately a
subset (v, T;) if 256¢€ S, we have 256¢ S; applying §), we obtain

| 156, 256, 345, 346¢ S.
Also, if both 136,245¢ S, S has fhe subset
(v,123,124, 125,126, 135, 136, 245, 246) ~ (v, T}),
under (46) ; using $), we see that § cannot contain both (136, 245), nor both (146, 235).
(i) Suppose first that | Le S, Ay,
Then : 145,236¢ S;

for both 1,4, 145 in § would give immediately a proper subset S, and (using §) both A,;, 236
in § would give an equivalent subset.

Since 125€ .S, § contains one of (A,4,4,4, 145,256), and hence one of (1,,,15). By &,
$ contains a form from each pair

('114: ’126)’ (/123) ’{15)9 (1145’ /126)) (/1363 A15) :
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Also, since 125€S, S contains one of (A;4,4,,,145,235); and, since 126€S, one of
(A145 453, 146,286). Now 145¢ S, 236¢ S, and S cannot contain both 146 and 235; hence S
contains one of A4, A,5. Using §, we deduce that § contains a form from each pair

(’114’ /123) ’ (’145) /136) .

a) Suppose now that some one of 14, A5, 4,45, 435 does not belong to §; since these forms
pp 14> 235 A455 A36 g

are equivalent under §), we may take

Then, from above, § contains A5, 1,5 and one from each pair (4,4, A5), (A4 A3). Also, since
135¢ .S, S contains one of (1,4, 434, 145, 356) and hence one of (4,4, 356).

Thus either S contains A,,, giving S =S, as required; or S contains all of Ay, 4,3, 356.
This last alternative is impossible; for it gives ¢=>9 and p>7, since now A,; fails to combine
with the seven forms v, A,6, 4,5, 125, 135, 234, 246 of S.

(b) Suppose next that S contains all of A,,, Ay3, A45, A36. Then since 1,4, A53€ S, S contains
one of (A;5,A34, 156, 346), (46,434, 256, 345), and hence a form from each pair (15,4,),
(A96, A34). Since =8, p<<7 and so § cannot now contain both A5, 1,6. Hence 13,€.$ and we
have S = ,,, as required.

(ii) Suppose next that Aig#S, AyséS.

Since 246,123, 124¢ S, § contains a form from each set \
(Agss Agy 256, 346),  (A;g) A5, 136,235), (A1, Ags, 146, 245).
Thus § contains A3, and a form from each pair
(136,235), (146,245).

Since 136 ~ 235 under $), we may take 136€S; since S cannot contain both 136 and 245,
we require 146¢S. But now we have ¢>>10 and p>6 (since 125 fails to combine with the
six forms A,,, 134, 234, 246, 136, 146 of ), and this is impossible.

(iii) Suppose, finally, that S contains just one of 1,6, 4,5. Since these are equivalent under

$, we may suppose that Le S, AyéS.

We note that this condition is invariant under the subgroup
$' =R(16) (25) (34)

of H.

As in (ii), S contains one of (4,5, A3, 256, 346) and so
| A€ S.
Also, as in (i), both A,¢, 145 cannot belong to §' and so
145¢ 5.
By 1emma 9-2 (ii), S contains one of (1,5, 235, 256, 136, 246, 145) and hence one of
' | (235,136).

Hence ¢>9 and so p< 6. But A, fails to combine with the six forms v, x5, 125, 126, 134, 234
of §. Hence ¢ = 9 and p = 6. It follows that § contains just one 4, from the pair (235, 136)

60-2
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and no further g, ; and that all further forms in § must combine with Ag,. This last statement
shows that in particular ' i

A5 Ao S

Since 125¢ S, § contains one of (A4, A, 145,256) and hence A,4; by §’, A;5¢S. Since
126¢ S, S contains one of (1,3, 4,5, 236,156) and hence A,45; by ', ,5€ 5. S thus contains the
six forms Aig, 34, 14y A36, Ag3, Ay5, and, since p = 6, § contains no further 4;. But since
126, 234 ¢ S, S contains a form from each set (1,5, 4,5, 256, 136) (/125, Age, 235, 346), and hence
both 136 and 235, contradicting ¢ = 9.

Thus this case is impossible, and the lemma is proved.

LEMMA 9:10. If S has a subset (v, T;) (but no subset equivalent under ®(v) to any (V, 1), i<5),
then S is equivalent to one of

Sl = (V’ /114’ ’115’ /116’ Té)a

S5 = (V, A14s Agzs Aggs A3y Agqy T35 145,245, 345),
Sy = (¥, 145 A15, Agg Aggs Ags, Ay Asss T3, 236),
Se = (Vs X145 iz Ao, Agys Asss T, 245),

SIO‘ = (¥, A3, Apg Ags, Agy; A3s, T5, 145, 236).

Proof. We have ;
(v, Ty) = (v,123, 124, 125,126, 134, 135, 136),

and G (v, T;) contains § = {(23), (4,5, 6)'}.
If § contains both A4, 145, we have a proper subset S,; using $, we therefore have

$ cannot contain both A, Uk (4,5,k = 4, 5, 6). (9-29)
If § contains both 234, 246, we have a subset (v, 7}) ; using $, we have
S cannot contain both 247, 231, or both 37,23; (i,j = 4, 5, 6). (9-30)
If S contains both 246, 256, we have a subset (v, T3), using §), we have
$ cannot contain both 23, 2ik, or both 33, 3ik (i,5,k = 4, 5, 6). (9-31)
Now by lemma 9-3 (ii), S contains a form from each set

(Mg 145,146,256, 356,234), (1,5, 145, 156, 246, 346,235), (1, 146, 156, 245, 345, 236).
(9-32)

I. Suppose that § contains some one of 145, 146, 156. Since these are equivalent under
9, we may take

145¢ S
then, by (9-29), A€ S.
Now (v, T;,145) C .S, and this subset is invariant under 9’ ={(23) (45)}. From (9-32),
§ contains one of (146, 156, 245, 345, 236) ; (9-33)

since, under §)’, 146 ~ 156 and 245 ~ 345, there are three inequivalent choices of a form
to satisfy this condition. We now consider these in turn.

(i) Suppose | 146¢ S, (9-34)
so that, by (9-29), Ap5¢ S,
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Also 156¢ S,

since the set (v, 177) ( 2<i< j< 6) determines a face. The subset (v, 7}, 145, 146) is invariant
under the group {(2, 3,4)’, (5, 6)}.

Since 125,126¢ .S, S contains a form from each set (A4, Ayy, 156, 245), (A5, Ay, 156, 246),
and hence a form from each pair (Ay, 245), (A4, 246). By (9-31), S cannot contain both
245, 246, and so we require A,,€ S. Applying (2, 3,4)’, we see that therefore

Agss Aggy Agg€ S,

Since A,5¢S, S contains a form from the set (1,5, A5, 245, 346). Applying the group
{(2,3,4)", (5, 6)}, we see that § contains a form from each of the six sets
(Moo dior ih5,7K6) (1o k = 2,3,4). (9-35)

Now every form occurring in the sets (9-35) fails to combine with six forms of the known
subset (v, dy3, A9y, 434, T3, 145, 146) of §; to see this, it is necessary only to check for A,; and

235, since
’ ’125 ""’135 ~ ’145 ~ ’126 ~ /136 ~ /146’
235,~_245 ~ 345~ 236 ~ 246 ~ 256

under {(2, 3,4)", (5,6)}. Hence p>6 and so ¢<<9; but S already contains nine g, so that
p = 6, ¢ =9 and § contains no further ;. From the sets (9:35), it follows that .§ contains

form fi i .
* ormk rOmm every pait (Aizs Aje) (1, = 2,3,4).
As above, all A occurring here are equivalent; we may suppose then that
Ag€ S.

Since p = 6, all further 4; in § must combine with A,; and 50 435¢ .5, A,4¢.S; hence A35€ S,
A45€S. This is impossible, since now § has the proper subset

(Agg> Aggs Ags, Agyy Ags, Aysy 123, 124, 125, 134, 135, 145)

which determines a face. :
(ii) Suppose next that 245€ S,

where, after (i), we have 146,156¢ S.
Also, by (9-30) and (9-31), 234,235, 246, 256¢ .
- We now have (v, T, 145,245) C S,

and this subset is invariant under " = {(45)}.
Since 124 €., S contains one of (4,4, 4,3, 146, 234) and so

Ag3€S.
Now § cannot contain both 1,4, 4,5, since, by lemma 9-2, § cannot have
(145, ’114, /115: 123a 136) :

as a subset. Since A;, ~ A,; under (45), we may without loss assume that
A5€ 8.
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Since 126¢€ 5, S contains a form from (A5, 4,4, 156, 246), and so
AyeS.

Since 136, 135¢€ .S, S contains a form from each set (4,5, 54, 156, 346), (A4, 34, 156, 345),
and hence one from each pair (134, 346), (134, 345). By (9-31), S cannot contain both 345,
346, and so Asq€ .

Now A34¢ S,
since otherwise § would have as a proper subset the face-set

(7, Aygs gy Ay, 123, 124,125,134, 135, 136, 145, 245).

Since 134¢€ .5, $ contains one of (4,4, A55, 146, 345), whence now

345¢ 5.
Now all our conditions are invariant under (23), whence it follows that
Ape S, Ayt S.
Finally, since A4 S, S contains one of (A5, 4,4, 235, 246) and so
A€ S;
and since, 126¢ S, S contains one of (v,,,A,5, 146, 256) and so
A4€S.

Collecting these results, we see that now § = 53, as required.
(iii) Suppose finally that, to satisfy (9-33), we have

236¢S.
Then, by (9-30), 946, 256, 346, 356¢ S.
Also, by (i) and (ii), we may now take
| 146, 156, 245, 345¢ S.

Our conditions are still invariant under §’ = {(23), (45)}.
Since 125¢€ S, S contains one of (1,4, 1,4, 156, 245), so that 1,,€ S. Applying $)’, we have
| Aggs Aass Agg Ags€ .

Since 125¢ .S, S contains one of (;4, 1,3, 156, 235) and so one of (1,3,235). Applying §’,
we see that § contains a form of each pair
(’123) 235): (/123’ 234)'

It is easy to see that not both 234, 235 can belong to S (since this would give g>11, p>6).
Hence 1,3¢ S and S = S, as required.
II. We may now suppose, after I, that

| 145,146, 156¢S.
The sets (9-32) now reduce to

(Ayy 256, 356,234), (A5, 246, 346, 235), (A4, 245, 345, 236). (9-36)
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We note also that if all three A;; occurring here belong to S, then § = S}, as required. Thus
hereafter we may suppose that S does not contain all of 4,4, A;5, 4,6 (these forms being
equivalent under $)), and we split cases according to the number of them in §.

(i) Ao Ai5€S, A58 S;
this condition is invariant under $’ = {(23), (45)}. From (9-36), S contains one of
‘ (245, 345, 236).

Since 124€ S, S contains a form from each set (d;, Ay3, 146,234), (1,6, 55, 146, 245), and
hence from (1,3, 234), (1,5, 245). Applying $’, we see that § contains a form from each pair

(/1233 234): (’123, 235)a (’1243 245): (’125’ 245), (’134) 345)’ (’135> 345)' (9'37)
(a) If neither 245, 345 belong to S, then clearly
236, A9, Ags, Agy, Ag5€ .

It is clearly impossible that both 234, 235 belong to § (else ¢=10, p>=6), whence A,5¢€ S.
Now § = s, as required.
() Otherwise, one of the (equivalent) forms 245, 345 belongs to S, say

245€ 8.
By (9-30) and (9-31), 234,235, 246, 256¢ S,
and so, from (9-37), , Ag3€ S

and § contains a form from each pair (15, 345), (155, 345).
If now 345 ¢S, we require A5.€ S, A35€ 5, and so S = S, as required. Otherwise we have

345¢ S
and so 346, 356¢ S.

Our conditions are now again invariant under §’ = {(23), (45)}.
Since A,5¢ S, S contains a form from each set (A,4, 455, 246, 356), (155, 454, 256, 346), and
hence a form from each pair '
P (AaeA35)>  (Ag5: Ass)

Since 4,5 ~ A5, under §)’, we may take lueS
34€ -

Then A35¢ S
(since S cannot have Sg as a proper subset), and so
Ague S.
We now have (v, X145 Ay55 Aggs Agys A3y, Ty, 245, 345) CS,

and each of A5, 4,,, 45, fails to combine with six forms of this subset. Hence p>6; since
q>9, it follows that p = 6, ¢ = 9 and § contains just one more A;;. This A;; must combine
with A5, A5, and Ay, (since p = 6), and therefore can only be A,;. Thus A,;€ 5. But now A,
fails to combine with the seven forms v, 1,5, 123, 126, 136, 245, 345 of S, contradicting p = 6.
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(ii) Suppose finally that some two of A4, 4,5, 4,5 do not belong to §. We may take
’114s ’115 ¢ S’

and our conditions are again invariant under £’ = {(23), (45)}. From the first two sets
(9-36), we see that S contains a form from each of the sets (256, 356, 234), (246, 346, 235).
(a) If 234€ S, then, by (9-30), 246¢ S, 346¢.S, whence 235¢S. Thus, using (9:30), we

now have 234, 235¢ S,
245, 246, 256, 345, 346, 356¢ S.

Since 124,126¢ S, S contains a form from each set (5,54, 145,246), (1,4, 1,5, 146, 256),
and so A€ S, A,5€ 5. Using §’, we obtain

Az Agss Aags Asgs Ay A3g€ S

We have now found sixteen forms in S, so that S can contain no further forms, in particular
none from the last set (9-36) ; a contradiction.

(b) If 234¢S, S contains one of 256, 356, and these are equivalent under $’. We may
therefore take

- 356¢ S
Then 235, 346¢ S, and so, from the second set (9-36),
246¢ S.
Thus now 234, 235, 236, 345, 346, 245, 256¢ S

(using (9-30), (9~31)); from the third set (9-36) we have at once
A€ S.

We note that our conditions are invariant under §" = {(23) (45)}C 9.
Since 126€ .S, S contains one of (A4, 55, 146, 256) and so ,;. By $”,

Agsy Agq€ S.
Since 124¢ S, S contains one of (4,5, 4,3, 145,234) and so
Ays€ S,
Also, since 125¢€ S, § contains one of (4,,, 1,4, 145, 256) and so 1,5. By §”,
Aggs A3g€ 5.
But now we have ¢>9, while A,; fails to combine with the seven forms
Y, Aggs Aggs Ay, 125, 134, 136
of S, giving p>7; this is impossible.

LemMa 9-11. If S has a subset (v, Tg) (but no subset equwalent under ® (v) to any (v, T}) (1< 6)),
then S is equivalent to one of
Sy = (V: Ai6s 1),

S5 = (V, /123, /124, /125, 716’ 126, 34:5).
Proof. We have (v, Ty) = (v,123,124, 125,134, 135, 145),
and & (v, Tg) contains § = {(2, 3,4, 5)’, R(16)}.
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We observe first that if ,4¢ S, then S = S, as required.
Henceforward then we may suppose that

A€ S.
Next, if 126, 136¢ S, we have a subset (v, T;) ; applying $, we obtain:
S contains at most one of 126, 136, 146, 156; (9-38)
S contains at most one of 234, 235, 245, 345. (9-39)

- By lemma 9-2 (ii), S contains a form from every set
(’116: 16i’ 16j’ yk’ Ul’ Idﬁ) (Z,j, k’ l= 23 3: 43 5); (9°4O)

If now S contains none of the eight forms listed in (9-38), (9-39), it follows that . contains
all six forms kl6 (k,/ = 2, 3,4, 5); this is trivially impossible (e.g. it gives a subset (v, T;)
of §). Since these eight forms are equivalent under §), we may suppose that

126¢S;
then, by (9-38), 136,146, 156¢ S.
(i) Suppose first that 345¢€S.
Then, by (9-39), 934, 235, 245¢ S.

(We note that all six sets (9-40) are now accounted for.) Our assumptions 126¢ S, 345¢.S
are invariant under the subgroup

5, = {(3: 4, 5)1: m(16)}
of $, under which Agg ~ Ay ~ Ags.

Since 123€ S, S contains one of (A165 A245 136, 234) and 50 Ay4€S. It follows that all of
Aggs Az4; g5 belong to S, and § = S, as required.

(i1) Suppose next that 345¢ S.

Our conditions are now invariant under $" ={(3,4,5)"}. From (9-40) we find that §
contains a form from each of the pairs

(234, 256), (235,246), (245,236)

(after dropping the excluded forms A4, 136, 146, 156, 345). Since S contains at most one of
234, 235, 245, and these forms are equivalent under §)”, we see that there are just two
inequivalent cases to consider:

(a) S contains 236, 246, 256;
(b) S contains 245, 246,'256.

In either case § has a subset (v, T;), contrary to assumption.

We have now shown, as asserted above lemma 9+6, that all face-sets S are equivalent to
one of the sixteen sets Sy, :.., 8], 53 -+, 5o listed there. Our next step is to establish the
equivalence of the last five of these sets, S5, ..., 81y, with the corresponding unprimed sets.

61 VoL. 249. A.
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We could of course write down a particular element of G effecting the required trans-
formation in each case. A less synthetic method is to use the following property of :

LEMMA 9-12. If (ky, Koy K3y Ky, K5) @S @ Set of five forms, every pair of whick combines, with the
exception of Ky, ks, then there exists a unique® element T of ® with
T(Kyy Koy K3y Ky K5) = (v,123,124,125,134). (9-41)
Proof. By lemma 9-1 (iii), we can find a T satisfying
T (k5 Koy K3 Kg) = (v, 123,124, 125).

Then T(x;) must combine with v, 123, 124 but not with 125, and is therefore easily seen to
be either 134 or 234. Replacing T by (12) T if necessary, we have (9-41) satisfied.

To prove uniqueness, we have to show that if T leaves each of the forms v, 123, 124, 125,134
invariant, then ¥ = +3J. Now T (126) = 126, since 126 is the unique form combining with
all of v,123,124,125. Also if we fix the sign of 7" by taking T(v) =+, then the signs of
T(123),...,%(126),F(134), are determined. Since the six forms »,123,...,126,134 are
easily seen to be linearly independent, it therefore follows that ¥ = J, as required.

We now prove

Lemma 9:13. Under ®, we have
Sy~ Sy~ 85, S5~ 85 Se~Se S10~S1o-
Proof. In each case we establish a suitable transformation by lemma 9-12, using appro-
priate linear relations between forms to find the complete map of each set. It will be

necessary to give all the details in one case only, say S, ~ ;.
(1) We have, after reordering,

Sy = (v,123, 124, 125, 126, 134, 135, 156, 234, 246, 256, A4, 1,6, Agg> Agss s)
Sy = (123, A5, 134, Ay, 124, Ay, 456, Ay, 136, v, 125, 356, 256, 245, 346, A,5).
By lemma 9-12, a uniquely determined element I of ® satisfies |
T (v,123, 124, 125,134) = (123, 1,5, 134, 4;¢, A55).
We now show that T(S3) = S,, in the order specified above.
First, T(126) = 124 (as the unique form combining with allof 123, 1,5, 134, 4,5). From the
linear relations (with suitable sign!) '
Ay = 123126, A, = 124—125, A, = 124—126,
we then obtain ' T(A36) = A5 —124 = 245,
| T(Mys) = 134— A, — 346,
T(lye) = 134—124 = A3,

It now follows that T(135) = 456, T(156) = Ay,
by using the relations 135 = 134+A,5, 156 = 135+ A44;
and then that T(234) = 136, T(246) =v, T(256) =125

from the relations 234 =v—156, 246 =v—135, 256 =y—134.

* ¥ is unique in so far as we are identifying transformations with their negatives.
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Finally, we have  T(1;,) = T(123—234) = A,; —136 = 356,

T(Ai) = T(124—246) = 134 —v = 256.

(ii) The remaining four equivalences may be established similarly, beginning with the
subset (v, 123,124, 125, 134) in the first set of each pair; it suffices to write down an appro-
priate ordering: _

Sy = (v,123,124, 125,126, 134, 135, 136, 145, 245, 345, A, 4, dys, Aoy Aggs Asg)s

Sy = (A5, Ayg, 134, 123, 124, 256, 456, 356, Ag5, 136, 245, A,q, v, 125, 346, 1,5) ;
¢ = (v,123, 124, 125,126, 134, 135, 246, 256, 1,5, Ays, Agg),

Sy = (Ays, 345, Ayy, Ays, 126, 134, 135, 125, 124, 145, 123,0) ;

Se = (v,123,124,125,126, 134,135, 234, 246, A4, A1, Ay, Ay, Ass),

Ss = (A5, 123,136,126, 1, 134, 124, Ay, 245, 125, 135, 1, A5, Ays) ;

Sio = (v,123, 124,125, 126, 134, 135, 246, 256, 346, A4, 416, dag, Ap> Ags)

S1o = (Ags, 126, 1y, 123, 236, Ay, 124, 145, A5, 135, v, 125, Ay, 136, 134).

SOCIETY

Lemma 9-13 shows now that all face-sets are equivalent to one of S, ..., S;;. To establish
that these form a complete system of representatives, we have only to prove

LemMA 9-14. No two sets S, ..., S}, are equivalent.

Proof. Clearly equivalent sets must contain the same number of forms and have the same
value of p (defined, as in lemma 9-5 as the maximum number of forms of a set not combining
with one form of the set). For the sets S}, ..., S},, p is simply the number of 4; occurring.

An inspection of the sets shows that the only possible equivalences are between:

S3(16), S;(16), S1,(16) (with p=17);
S5(12), S5(12) (with p = 3).
(i) S5 contains a form which combines with all but one other form of the sets, namely,

123, which fails only to combine with A,5. \S; and S, are easily seen not to have this property,
which is clearly invariant under equivalence transformations. Hence

S ~ S7, S lad Sll .
(ii) S; has only one form, namely, v, which fails to combine with seven forms of the set.

S,; does not have this property; e.g. both v and A4 fail to combine with seven forms of .S, ;.
Hence S S
7% 911

OF

y

(iii) In Sy, v fails to combine with A;q, Ays, A3y, and no two of these three forms combine.
S5 has no form with this property; to see this, it suffices to test for v, 1,3, 123, 126 since every
form of S5 is equivalent to one of these under the group {(8, 4, 5)’, R(16)} C G(S;). Hence

We have now established the 11 inequivalent classes of faces of R(¢,), in agreement with

table 2, and it remains for us to consider the neighbours of ¢2 along these faces. As we shall
see, it is necessary only to prove

LemMA 9-15. The nezghbours of B, along the faces Wy, Wy, Wy (determined by the face-sets Sy, S5, S)
are equivalent to ¢,.

SOCIETY

OF
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Progf. Probably the simplest method of obtaining the quadratic form y;(x) from the face
set S; is as follows: - ;
(a) Solve the equations (9-13) corresponding to the forms not in S;; (6) with an appro-

priate sign, this yields YY) = Sy
i = i Y;Y;-
(¢) Apply the transformation (9-2), i.e.

h= gsxp Yg=12%—%y Ys=12x—%3, Y;=—% (1=4,5,6),

which gives ¥,(x). ‘

(1) In place of S, we take

Sy = (v, Ay, 134,145,146, 345, 346, 456),
obtained by the transformation (14) (26). This gives
‘ Yu(X) = —xy,

Now Ji(X) = $3(X) +¥4(X) = §o(X) —x1 2, — 2, 23— %2, ~ $5(X),
as is essentially shown in § 4 (vi).

(ii) From S, we obtain

YUs5(X) = 23+ %) X5+ %) 242y X5+ % 25— Xy Xy — Ky Xy — Xy
15(X) = 85(X) +¥5(X) = 26} + a3 +af+ 2§ +af+ g+, 25
+ 25 x4+ 21 x5+ 200) X Xy X+ Xy Xy Xg X5+ Xg X+ X4 X5+ Xy X+ X5 X

This is equivalent to ¢,(x) under the transformation

1.
1 -1 .
AR B
=t . . .1 . . )*
A T
S T |

(iii) From Sg we obtain
Ve(X) = 2%+ x5+ 22+ X3+ %, 2, + 2%, x5+ 2%, %4+ Bx, %,
| + 8%y X6+ Ko X4+ Xy Xg + X3 X4+ X3 X5+ X3 X+ Xy X5+ 2%, X6+ 25 X,
Jo(X) = 85(%) +¥6(x) | |
= 3u3 -+ 23+ 4%+ 2xF - 203 -+ 203+, Xy + 2, Xg + 3%, %+ 4, x5+ dix, x5+ Xy %y
-+ 2y %y 4 £y X5+ 2% X6+ 25 %, + 2, X+ 2y x5+ 20, x5 + B, x5+ 35 X
This is equivalent to @,(X) under the transformation

1 . . . . .

2 1 . 1 1 1

B B | 1 1 A |
x>0 SRR S X.

. . 1 .

—2 . Lo—=1 =1

This completes the proof of the lemma.
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There now remain eight inequivalent faces of R(g#,) to consider. Since table 2 has now
been verified for all forms ¢; except ¢,, it is easy to see that R(g#,) must have eight inequivalent
faces with neighbours ¢,, ¢, 8,, @5, b4, b5 b5 d» and with the numbers of edges as given in
the table. Thus, for example, ¢, has three inequivalent faces W} (25), W, (20), W; (20) with
neighbour (equivalent to) ¢,; hence ¢, must have three inequivalent faces W (25), W (20),
W (20) with neighbour (equivalent-to) ¢,; these appear in table 2 as W] (25), W,(20),
W; (20). As an extra check, we see that the number, ¢, of edges of these eight faces, as given
in table 2, agrees with the number, 36—, of forms in the corresponding sets* S;e

Thus table 2 is now completely verified for ¢,.

10. GONCLUSION

We have now completed the program outlined in §2 by finding all neighbours of the
inequivalent faces of each R(¢,) (¢=0,...,6). Moreover, we have established at the
beginning of each section that each ¢, is perfect, and that each is extreme (with the exception
of g5, which is not extreme). The proof of theorem 1 is therefore complete. |

It is unfortunate that the analysis of § 9 is so long and detailed, since this leaves little hope
that these methods can be practicable for any 7> 6. There is every reason to believe that the
number of extreme (or merely perfect) forms increases rapidly with z, and that very large
values of s— N occur (e.g. for the known absolutely extreme forms in seven and eight vari-
ables) ; the total number of inequivalent faces of the various regions R(¢) will therefore be
overwhelmingly large.

Voronoi’s algorithm has however the desirable property of providing a check on the
complete analysis, as was indicated at the end of §9; every common face (or, rather, class
of equivalent faces) of regions R(4), R(¢;) with i = is found just twice.

The two new forms ¢; and ¢ produced by the analy51s suggest some interesting general-
1zat10ns to extreme forms in higher d1mens1ons, which the author hopes to consider in a
separate article. Thus our representatlon of ¢ (§7) generahzes to the n-dimensional form

$=24
0
with iy,.z 0, iiy,.so (mod z+1).
0 0

which is almost certainly extreme for all n>>6

I should like, in conclusion, to express my gratitude to Professor T. G. Room, F.R.S.,
for helpful discussions on the geometrical and group-theoretical aspects of the forms ¢,
and ¢,; and to Mr W. B. Smith-White for his comments on Voronoi’s papers.

* The correspondence between faces W and face-sets S is not yet quite complete. Thus although there
must be two faces W (20) with neighbour ¢,, we do not yet know whether they arise from S,, S, Sy, Sy or
Sy1> all of which have 36 —¢ = 16. This is irrelevant from the point of view of table 2; however, the author
has verified the correspondence directly, by finding the explicit form for each neighbour.
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_ APPENDIX
Baker’s table of synthemes referred to on p. 483, footnote, is:

1 2 3 4 5 6
1 — 14.25.36 16.24.35 13.26.45 12.34.56 15.23 .46
2 14.25.36 — 15.26.34 12.35.46 16.23 .45 13.24.56
3 16.24.35 15.26.34 — 14.23 .56 13.25.46 12.36.45
4 13.26.45 12.35.46 14.23.56 — 15.24.36 16.25.34
5 12.34.56 16.23.45 13.25.46 15.24.36 — 14.26.35
6 15.23.46 13.24.56 12.36.45 16.25.34 14.26.35 —_

This (symmetrical) table has the property that each of the fifteen duads 4 (unordered
pairs, with 7=/, chosen from 1, ...,6) occurs just once in each row and column. Hence
(9-12) is satisfied, in terms of fifteen parameters u; = u;; (¢ /), by taking

y=2u; and ;= Uy +Ug i,
where ab. cd. ef is the syntheme in position (3, j) in the above table.

The complete solution of the equations (9-9), (9-10) may now be constructed as follows:

For each triple ik, let pgr be the complementary triple. The six synthemes in positions
(4,7), (k) (4, k), (£,q), (p,7), (¢,7) are found to contain all nine duads formed by taking
one element from each of two other complementary triples abd, def. We then have

ﬂijk = Ugp— Uge — Upgs ﬂpqr = Ugy— Ugp— U,y
(or conversely). Defining the f;, successively so that two #’s have a common element ,,
if and only if they have one common suffix, we obtain the solution

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Bros = —Uig—U3—Uyg, Pase = —Uss— lUsg— Use
Prog = —tys—Uig—Uses  Pasg = —Ugz—Upy—Usy
Pros = —Ugy—Usg—Usgy  faag = —Uy3—Uy5—Uss,
Prog = —Uss—Uss—Uy5s  fags = —Up—Uig— Usg,
Prss = —Ugq—Use—Uses Pase = —U1a— U5 — U,
Prgs = —thyg—Uys—Uasy  fose = —Usz—Upg— Usg,
Brse = —Ugs—Usg—Uses Poas = —Uy3—Ups—Usy
Bl4p = —Ugg—Ugs— Uz, [floge = —Uyq—Uyg— Uy,
Brae = —Upp— Uy — Uy, PBags = — g5 —Use—Usg,
Bise = — Uiz —Uig—Usg, [oga = — gy —Ups—Uys.
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